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Abstract. We extend the concept of the correlated knowledge-gradient policy for the ranking and selec-
tion of a finite set of alternatives to the case of continuous decision variables. We propose an approximate
knowledge gradient for problems with continuous decision variables in the context of a Gaussian process
regression model in a Bayesian setting, along with an algorithm to maximize the approximate knowledge gra-
dient. In the problem class considered, we use the knowledge gradient for continuous parameters to sequen-
tially choose where to sample an expensive noisy function in order to find the maximum quickly. We show that
the knowledge gradient for continuous decisions is a generalization of the efficient global optimization algo-
rithm proposed in [D. R. Jones, M. Schonlau, and W. J. Welch, J. Global Optim., 13 (1998), pp. 455-492].
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1. Introduction. Our goal is to find the global maximum of a real valued contin-
uous function that is expensive to compute and that can only be evaluated with uncer-
tainty. We need an algorithm that can give satisfactory results with as few function
evaluations as possible. For this reason, we are willing to spend extra time deciding
where we would like to evaluate the function next. This problem arises in applications
such as simulation optimization, the design of machinery, medical diagnostics, biosur-
veillance, and the design of business processes.

We extend the concept of the knowledge-gradient policy for correlated beliefs
(KGCB) described in [10] and [11], originally developed to find the best of a finite
set of alternatives, to problems where we are trying to optimize over a multidimensional
set of continuous variables. The KGCB policy maximizes the marginal value of a single
measurement and has produced very promising results in discrete ranking and selection
problems without requiring the use of any tunable parameters. In [11] the KGCB policy
is used in a simulation optimization application to tune a set of continuous parameters
which must be discretized to perform the search. However, the KGCB policy becomes
computationally too expensive when it is necessary to discretize over a large multidi-
mensional vector. We extend the knowledge gradient to multidimensional continuous
problems and then show that the knowledge-gradient concept is at least competitive
with, or outperforms, specialized algorithms for specific problems.

Although the concept for the knowledge gradient is very general, we choose to model
the function to be optimized using Gaussian process regression with a squared exponen-
tial covariance function and model the noise in the observations as additive Gaussian
noise. The knowledge gradient for continuous parameters (KGCP) policy that we
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propose extends the well-known efficient global optimization (EGO) algorithm in [17] to
the case of noisy observations. When choosing a sampling decision, the KGCP accounts
for the fact that an additional observation will update the regression function at un-
sampled decisions as well as at the sampling decision; the updated best decision will
not necessarily be the current best decision or sampling decision.

This paper makes the following contributions: (1) We propose an approximation to
the knowledge gradient for multidimensional continuous decision variables which can be
efficiently computed. (2) We describe a gradient ascent algorithm that can be used to
maximize the KGCP without resorting to discretization. (3) We prove that, under mild
conditions, the KGCP policy applied to maximizing a continuous function with obser-
vation noise will cause the uncertainty in the regression model to disappear in the limit.
(4) We examine the competitive performance with sequential kriging, a widely used
algorithm which lacks our theoretical guarantees, on a series of test functions.

This paper is organized as follows. Section 2 reviews the literature for continuous
global optimization problems. Section 3 describes the Bayesian model capturing our
prior belief in the function being optimized. We review the knowledge gradient for dis-
crete alternatives, which guides measurements by computing the marginal value of in-
formation. Section 4 describes how the knowledge gradient can be computed for
continuous measurements. The KGCP is then compared to the expected improvement
in [17]. Our approach requires approximating the knowledge gradient as a continuous
function, and we derive a gradient ascent algorithm for this purpose. In section 5 we give
mild conditions under which the posterior variance at each decision in the regression
model will go to zero almost surely when using the KGCP policy for finding the global
maximum of a function with observation noise. Finally, section 6 compares the KGCP to
sequential kriging optimization (SKO) [16], which is a popular algorithm for determin-
ing sequential measurements in the presence of noise, on a set of test functions.

2. Literature review. We briefly present and summarize some of the current ap-
proaches to maximizing an expensive function with observation noise. The applications
are vast, and multiple research disciplines have addressed the problem. Simulation opti-
mization covers gradient-based methods (see [33], [18], [40], [13], and [34]), direct search
methods (see [40]), and metaheuristics (see [12]). The term model-based optimization can
be used to categorize the fields of trust regions (see [30], [5], [4], and [7]), response surface
methodology (see [2], [15], [27], [28], [29], and [32]), and the surrogate management frame-
work (see [1]). Finally, Bayesian global optimization consists of algorithms which combine
Bayesian models of the function with single-step look ahead criteria.

Bayesian global optimization takes a statistical approach to optimizing functions
efficiently (see [36]). One of the first approaches in the field was [21] that approximates
a one-dimensional function with a Wiener process and uses a probability of improvement
criterion to choose the next point to sample. [41] uses the probability of improvement
concept for higher dimensions in the P-algorithm. [46] as well as [26] and [22] also use a
one-dimensional Wiener process but then use expected improvement criteria to choose
the next point to sample; they discuss convergence in the case of no observation noise.
For the case of no observation noise, [35] introduces the popular design and analysis of
computer experiments kriging model to approximate the expensive function; a kriging
model is a method of interpolation based on random spatial processes (see [24], [6], [19],
and [20]) and is referred to as Gaussian process regression in computer science (see [31]).
[17] presents the EGO algorithm for optimizing expensive functions without noise which
combines a kriging model with an expected improvement criterion (also see [37] and
[38]). Work has been done in [42] to prove convergence for an expected improvement
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algorithm in the case of no observation noise if the true function comes from a reprodu-
cing kernel Hilbert space generated by the covariance function. Another example of
Bayesian global optimization is [14] which combines radial basis interpolation and a
utility function based on the uncertainty of the response surface weighted by how close
the response surface’s value at that point is to a specified target value.

Recent extensions of Bayesian global optimization explicitly account for observa-
tion noise, although limited convergence theory has been developed for the following
algorithms. In [16], SKO combines a kriging model with an expected improvement cri-
terion which accounts for noisy function observations; the expected improvement cri-
terion is weighted by a term that favors decisions with higher uncertainty. One challenge
of SKO, like many other Bayesian global optimization algorithms, is maximizing the
expected improvement criterion to find the next sampling decision; the Nelder-Mead
simplex method is suggested. [44] and [43] present an informational approach to global
optimization which combines a kriging model, Monte Carlo, and other approximation
techniques to estimate the distribution of the global minimizer of the function after an
additional observation. The sampling decision is made by minimizing the entropy
(which can be interpreted as uncertainty) of the global minimizer. The approaches
in [8] and [9] address the issue of different levels of noise using an expected improvement
criterion with kriging models found in [6] which allow for noisy observations.

3. The model. We consider the following optimization problem:

(3.1) arg max i (z),
zeX

where z € R? is a decision vector, X is a compact feasible set of decisions, and p :R? — R!
is a continuous function we wish to maximize. Let §"*! be the sample observation of the
sampling decision z™ for n =0, ..., N — 1. The variance of an observation, given u, at a
decision z is A(z), and we assume 1:R? — R! is continuously differentiable over the domain
X and is known. In practice, the variance of the observation noise is unknown but can be
estimated. We assume §"*! has a normal distribution centered around the true function,

7 a7~ N (a). Aa)).
and ', ..., 9" are independent given p and 2, ..., 2". (This assumption would be
violated if using the method of common random numbers (see [3]).) Our goal is to sequen-
tially choose z" at each iteration n =0, ..., N — 1 in order to approach the solution to
(3.1) as quickly as possible.

Adopting a Bayesian framework, we start with some belief or information about the
truth, p. We treat p as a random variable and assign it a Gaussian process (GP) prior
density. u" is the updated mean of our random variable, given n observations. Then, for
any 2, ..., 2" € X, our a priori distribution is [ (%), ..., u(z")]T ~ N (u([2°, ..., z"]),
2020, ..., 2")), where u°([2°, ...,2"]) =E([u(2), ..., u(z")]?) and XO([2°, ...,
z"])) = Cov([n(2°), ..., m(2")]T). Next, we define a filtration F", where F" is
the sigma-algebra generated by z°, 7', ...,2" 1, §". We define u"([2%,...,2"]) =
E([u(2), ..., n(@)]T|F") and =*([2°, ..., 2"]) = Cov([u(2°), ..., u(z™)]T|F") for
1, ..., 2" € X. In addition we use the notation "(2°, 2') = Cov(u(z"), u(a)|F").

The multivariate normal distribution is a natural conjugate family when the
observations come from a normal distribution with known variance. This means our
posterior is also multivariate normal. Hence, conditioned on F", [u(2°), ..., u(z")] T~
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N(p([2° ..., 2"]),Z"([° ..., 2"])). Next, we explain a method to assign the initial
covariance between ju(2°) and pu(z!).

3.1. Covariance structure. In order to specify the covariance matrix for our a
priori distribution of  at 2°, ..., 2" € X, it is sufficient to specify a covariance function.
Similarly to [35] and [11], we assume a Gaussian covariance function. Letting 2° and z'
be arbitrary decisions in X', we write,

32 Cou)n(e) = ep(~ D el ~a1)). a=0. p=0

where a € R? is called the activity of 4 and 8 € R! controls the uncertainty of our belief
about w. The initial covariance function given in (3.2) is a metric, meaning the covariance
of two decisions decreases as the distance between them increases. The parameter «; for
i =1, ...,pis called the activity in dimension i and represents how smooth pu is in di-
mension 7 (see [17]). For example, a very small «; would make the covariances bigger,
indicating that p is believed to be very smooth in dimension i. The key idea is that
the true function should be positively correlated at nearby points. For example, if
w(z) is greater than u°(x), then, for small 8 € R”, we should expect u(z + 8) to be great-
er than u'(z + 8) as well, assuming p is smooth. [31] explains that Gaussian processes
with this covariance function are very smooth because they have mean square derivatives
of all orders.

3.2. Updating equations. After the first n sampling decisions, the distribution of
(2%, ..., n(z"H)]T conditioned on F" is multivariate normal and hence completely
characterized by u"([2°, ..., 2" ]) and Z"([2°, ..., 2""!]), which can be calculated as
follows in (3.6) and (3.7). For a fixed n, define the matrix 0 = 2%([2°, ..., 2""!]) which
can be calculated using (3.2). Given the assumptions in our model, we can use the
Kalman filter equations in [25], or equivalently the Gaussian process regression equa-
tions given in [31], to compute the posterior distribution of i given F". We calculate the
measurement residual y" and the residual covariance S" as

' (a0
(3.3) =t - : :
@n Iu()(xnfl)
(3.4) Sm = 39 + Diagonal([A(z°), ..., A(z"1))).

We can then calculate the optimal Kalman gain using
(3.5) K" =3[S"]7L.

Note that if the minimum value of the observation noises 2™ is strictly positive, [S"] ™! is
well defined because the minimum eigenvalue of S™ is greater than or equal to A™™. Let
I, be an n x n identity matrix. Finally, the updated expected values of i at the first n
sampled points, and the covariance matrix of pu at the first n sampled points, condi-
tioned on F", are given, respectively, by

Mn(x()) M(J(l,())
(3.6) : = : + K"j",
MTL(.TTL*I) MO(.,L,’!Lfl)
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(3.7) s = (I, — K",

The above equations update the distribution of u at the first n sampling decisions con-
ditioned on F", but we also need to update the distribution of u(z) conditioned on F",
where z € X is an arbitrary decision variable that has not been sampled yet. We can
do this with the following equations. Define ¥ =20([z0, ...,2" ', z]) and Z" =
=([2°, ..., 2"t 2]), and let 0 be a column vector of zeros. Our new optimal Kalman
gain is given by

I,
n 50 _ n]—1
(3.8) K"=% m 157

We can now update u” and X with the following equations:

w(z") n(2?)
3.9 — + I_(Twn’
( ) /Ln($n71) M()(xnfl) y
n"(z) nO(x)
(3.10) "= (I — K"[1,]0)E".

If we explicitly want the distribution of p(z) conditioned on F" at some arbitrary
decision z, we can pull out the pertinent formulas from (3.9) and (3.10):

(3.11) w™(z) = pnO(z) + (2, z), ..., Z0(z" L, 2)[S"]Ln,

20(2°, z)
(3.12) 2z, z) =2z, 1) — [20(2°, 2), ..., 202", 2)][S"] ! _
20(51?"_1, x)

Equation (3.11) is a linear smoother if £°(z) = 0 Vz and is referred to as Gaussian process
regression in [31] and regressing kriging in [9]. There are also recursive equations equiva-
lent to (3.9) and (3.10) which update u™ and £" (see [11]). [11] shows that after we have
selected our sampling decision z" but before we observe "1, our updated regression func-
tion is normally distributed conditioned on the information available at iteration n:

W) [ e
(3.13) 5 - 5 L EE, a2,
//LnJrl(znfl) /,Ln(l’nil)
/,L"+1(.’£”) [L”(x”)

where Z™ = ("1 — pu(z)) //A(z") + Z"(z", 2"), with

e,

VA(z) + exTZegc'

(3.14) F(S.z) 2

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/21/13 to 128.112.66.10. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

THE KNOWLEDGE GRADIENT FOR CONTINUOUS PARAMETERS 1001

Here e, is a column vector of zeros with a 1 at the row corresponding to decision z. It can
be shown that Z"*! ~ N (0, 1) because Var(§"*! — u"(z")|F") = A(z") + Z"(z", 2").

3.3. The knowledge-gradient policy. The knowledge-gradient policy as de-
scribed in [11] for discrete X is the policy which chooses the next sampling decision
by maximizing the expected incremental value of a measurement. The knowledge gra-
dient at z, which gives the expected incremental value of the information gained from a
measurement at z, is defined as the following scalar field:

(3.15) VG () & B |max " (u)|F7, 2" = x| — max u"(u).
ueX ueX

The knowledge-gradient policy chooses the sampling decision at time n by maximizing
the knowledge gradient,

(3.16) 7" € arg max vEG"(z).

zeX

By construction, the knowledge-gradient policy is optimal for maximizing the max-
imum of the predictor of the GP if only one decision is remaining. [11] shows that in the
case of a finite set of decisions, the knowledge-gradient policy samples every decision
infinitely often as the number of sampling decisions goes to infinity; in other words,
the knowledge-gradient policy finds the best decision in the limit. In addition, [11] shows
that the knowledge-gradient policy is consistently competitive with or outperforms SKO
on several test functions.

The knowledge gradient can be explicitly computed when the feasible set of
decisions X is finite (see [11]). In the case where X is continuous, if p is small and X
is bounded, then X can be discretized, allowing for the use of the technique in [11]
for discrete decisions. However, the complexity of the calculation for this approximation
of the knowledge gradient grows exponentially with the number of feasible decisions |z|
because we must use a dense |z| X |z| covariance matrix in our calculation.

4. The KGCP. In this section we propose an approximation of the knowledge
gradient that can be calculated and optimized when our feasible set of decisions is
continuous. The approximation we propose can be calculated at a particular decision
z, along with its gradient at z, allowing us to use classical gradient-based search
algorithms for maximizing the approximation. This strategy avoids the need to discre-
tize the measurement space X" into a large number of points to be evaluated. Further-
more, it scales to multidimensional parameter spaces which would be impossible to
discretize.

We form the KGCP by replacing the maximum over X C R? with the maximum

over 2V, ..., z", the first n sampling decisions, and the current sampling decision,

(4.1) pKGn(p) 2 R _max w (@) Fr et = x| — max w(zh)],

We define the KGCP policy 7XGCF as the policy which selects the next sampling decision
by maximizing the KGCP,
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(4.2) z" € arg max vRG"(z).

zeX

This approximation should improve as n increases and the maximization is taken over
more terms. The first remark is that the KGCP is nonnegative. The proof follows from
Jensen’s inequality

..........

ey GH(E" M E[ZFr, 2" = 1

(4.4) > max w"(z')

In (4.3) we substituted in the recursive update for u"*!(z%) given in (3.13). 6,(Z, z) is the
ith element of 6(Z, z) which is defined in (3.14). In (4.4) we use Jensen’s inequality
with the convex function ¢(z) = max,_o ., u"(2') +6,(Z", ")z, where u"(z') and
éi(i”, z") are constants since they are measurable with respect to F™.

Also, comparing the terms that depend on z in the knowledge gradient and the
KGCP, we easily see that

(4.5) E| max wm (g Fr gt = x} < E[magu"“(u)u:", " =zx|.
= ue

This fact follows trivially because the maximization in the left term is over a subset of
the set maximized over in the right term. Initially, at time n =0, the KGCP
becomes

PKG0(z) = E[u! (2°)|F0, 2" = o] — nO(2) ], = n'(2) — 2°(2) = 0.

This shows that the KGCP policy is indifferent to the first sampling decision. At time
n =1, (4.2) becomes

7! € arg max (IE [max wr ()| Fl ozt = 2| — maxul(xi)|m1_m>.
Ve X i=0,1 i=0,1
At this point there is a trade-off between exploring and exploiting in our objective. Im-
plicitly, the algorithm would like to exploit, or sample near a current maximum of u";
this seems likely to increase the maximum of u"™. However, the algorithm would also like
to explore, i.e., sample far away from any of the previous decisions; these decisions have
more uncertainty and are less correlated with the current maximum of w".

4.1. Comparison to the expected improvement of EGO. EGO is a method
developed in [17] to optimize functions when there is no observation noise. For function
maximization, EGO uses the expected improvement criterion E[I"(z)|F"], where the
improvement given the information available at time n is defined to be the following
random variable:
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In [17], the EGO expected improvement is defined only in the case of no observation
noise, where A(+) = 0. In this case, the KGCP is less than or equal to the EGO expected
improvement criterion. In fact, if the second maximization term in the KGCP in (4.1)
were over i =0, ...,n — 1, the KGCP would be equivalent to the expected improve-
ment in the case of no observation noise.

Proposition 4.1. In the case of no observation noise, VX% (z) < E[I"(z)|F"].
Furthermore,

Proof.
]—)KG,n(l,) —E _7H0184X /L”Jrl(ilii”f", " = .I’:| _ /;I(I)la,X /J/"(Ii) s
<E| max p"(z)|F" 1" = :1,} — max wp"(z')
1=0.....n 1=0,...,n—1
(4.6) = E|max <,u”+1(1’"), max 1/L”(m’))‘f",z" = l’:| — max wp"(z')
1=U,..., n— 1=U,..., n—
= E[max (,u”“(x”), _max y7> Fr oot = m} —  max i
= E[max (,u"“(x") — max ¥’ 0) ‘.7-"" "= x]
=1,..., n
(4.7) =E[I"(x)|F"].

In (4.6) we used the fact that, conditioned on F", y™l = pu"(z') = n"(z') for
i =0, ...,n— 1 since there is no observation noise. |

The EGO algorithm maximizes the expected improvement given in (4.7) at each
iteration which is similar to maximizing the KGCP at each iteration when there is
no observation noise.

4.2. Calculation of the KGCP. We will first show how to calculate the KGCP
and then derive the gradient of this continuous function that can be used in a steepest
ascent algorithm. The KGCP in (4.1) can be efficiently calculated at a particular z € X
by using the two algorithms in [11], which we will now summarize. We define the pairs
(a;, b;) for i =0, ..., n as the sorted pairs (u"(z%),5,(Z", 2")) conditioned on F" and
"=z for i=0,...,n. The pairs (a;b;) are sorted such that b; <b;.; for
i =0, ...,n— 1. If there exists some i # j such that b, = bj and a; < aj, then the pair
(a;, b;) dominates (a;, b;), and the pair (a;, b;) is added to a list of initially dominated
lines. The a;’s are the intercepts and the b;’s are the slopes of the lines in Figure 4.1(a).
Furthermore, we define A° as the index map such that (a;, b;) = (u"(z%), 6 (X", 2").
For a fixed 2" = z, a; and b; are F" measurable and hence constants. We now simplify
the first term in the KGCP,

1=0,...,

(4.8) E nolaxn/L”“(xi)LF",:c"::c} zELnOlax w(z') 4 G(Z0, ") 2 at =1

(4.9) =E [ max  a; + bZ-Z} .
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a1+ b1z

(L —

N

Co = —00 €2 €1 €3 ¢4 = 400 Go=—00 (1 C3 = +00

(a) A visualization of Algorithm 1. (b) The output of Algorithm 1 with new indices.

Fic. 4.1. Algorithm 1 from [11] is a scan-line algorithm to reexpress f(z) = max,_y ., a;+ b;z as

f&) = Yho(a+ bl (2

In (4.8) we used the recursive update for 1" (z%) given in (3.13). We next summarize the
two algorithms in [11] which show how to efficiently calculate the term in (4.9).
Algorithm 1 from [11] is a scan-line algorithm that replaces the maximization in
(4.9) with a piecewise linear function using indicator functions. In Algorithm 1, A!
is called the accept set and is a vector of indices which keeps track of all the i’s such
that line a; + b,z is part of the epigraph shown in Figure 4.1(a). We keep track of the
values of z where the lines intersect in a vector c. ¢, is the largest value of z such that
line a; + b,z is part of the epigraph shown in Figure 4.1(a). In terms of the lines in the
accept set A' ; €14 41 18 the intersection of ag +bpzand agy + bA1 z. Solving for the

z such that these lines intersect we get Croar = (aq — ay1 )/(bA| —by) for i=
1,...,7, where 7 is the length of A! minus one. Also we set ¢y = —oo and
¢py1 = +00. For convenience, we define a; = a (A1) bi=b (A1) Cit1 = = 4l and ¢y =
—oo for i =0, ..., n. Algorithm 1 efficiently calculates constants Cgs -+ Cryq and the

vector of indices A1 so that a function of the form f(z) = max;—o ., a; + b;z can be
rewritten as f(z) = Z?:O(QA} + b 2)1, z,,)(2). The algorithm is outlined in Table 4.1
using the convention that the first index of a vector is zero.

Next, Algorithm 2 from [11] shows how to simplify the expectation in (4.10) to
(4.11), which is something we can easily compute.

TABLE 4.1
Summary of Algorithm 1 from [11].

1) ¢y = —00, Cpyy = +00, Al = [0]

2) for i=1:n

3) if (a;.b;) not initially dominated
4) loopdone = false

5) while loopdone == false

6) j = Al(end)

7) i = (a5 — a;) /(b; — by)
8) if length(A") #1 & ¢js1 < cpyq where k= Al(end — 1)
9) Delete last element in Al
0) else add i to the end of Al.

1) loopdone = true
2) end
3) end
1)

5)
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(4100 E L_Ig}%gm a; + biZ] =E [2; (ax + by 2 z,)(2)
=) lanP[Z € [¢;, ¢i)] + bE[Z1 ;) (2)]]

K3

= |l

(4.11) [aa (@(Cip1) — D(C)) + b (#(C) — p(Cira))]-

[l

=

In (4.11), ¢(-) and ®(+) are the probability density function and cumulative distribution
function of a standard normal random variable, respectively.

4.3. The gradient of the KGCP. Next, we show how to calculate the gradient of
the KGCP V,vXG"(z) at a fixed z € X. This will allow us to use gradient ascent to
maximize the KGCP. Let A = A°[A'], meaning A; = AY;; A is now a reordered index
set. For example, if A% =2,1,0] and A! =0,2,1], then A =[2,0,1]. A contains the
indices i such that (u"(z4") 4 6 40(2",2"))z is part of the epigraph of Figure 4.1(b)
for some value of z. /'

ProprosiTioN 4.2. The gradient of the first term in (4.1) is given by

VIE |: I(I)laX M7L+1($i)‘.7:71', "=
1= n

Proof.
VT]E |:i%??¥$7LM7L+1(Z.i)|fTL’ " =1z
(4.12) =V : [ (@4)(@(Ei11) — @(8))) + 64, (2", 2")(h(E) — B(E111))]
1=0
= D (Vo (@))(@(Fi1) = ©(&)) + (V64 (E",27)) ((2) — h(Ei11))]
(4.13) =

= D (Vo (@ ))(@(Ci11) = @) + (Var6 4, (E", 2))($(2) — $(Ei11))]

+ ) (1" (@) +64,(Z" 1) E11) (1) Vir Eia

i

— (" (@) 4 6 4, (2", 2") ) p(E) Vo T

i

Equation (4.12) is just the gradient of (4.11). In (4.13) we used the product rule
because c¢g, ...,c,y1 all depend on 2". In the last line we use the fact that
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5 @(f(2) = ¢(f(2)) 5 f(z) and F.$(f(2)) = —¢(f(2))f(z) 5, f(z) to differentiate the
second term. The first term in the final equation is analogous to (4.11) with the
scalars u"(z') and &,(Z", 2") replaced with the vectors V,.ju"(2') and V,.6,(Z", "),
respectively. 0

The calculation of V,.¢; for i=0,...,2+1 is relatively straightforward. An
equivalent equation for the ¢,’s which are output from Algorithm 1 is ¢; = =% for i =
1, ...,7 with & = —oco and &;,, = +oo. Then using the quotient rule we can calculate
the following:

(Bi75171)(v&zfliv_‘ai)j(&ifl7at>(v577v5L71) for Z . 1 ’FL
~ b5, 1) PR (2
(4.14) Vzn Cl = { N ( 1) i
0 for i =0,n+ 1.
As long as we can calculate V. pu"(2') and V,.6,(Z", 2") for i =0, ...,n, we can

calculate the expression in Proposition 4.2 and the gradient of the KGCP. The equations
for these values are expressed in the next two lemmas.

LEvma 4.3.
N
vw n(l,z') — { 0 if 1 < n,
’ Vo pO(z™) + Jr[S" "ty if i = n,

where we let J" be the following matrix of first-order partial derivatives:

(4.15)  J" = [V,.30(a0, 4", ..., Vu30(z !, 2")]

(@ - B0 e eyl - o))
(4.16) =2 : .
a,(zh —zp)Z0(a" 2") - a,(apt —ap)Z0(am a")

Proof. The proof is given in Appendix A.1.

LeEmmA 4.4.

BV elei"ewn, — egi" €V B
B? ’

vxn6i(i7l, J)n) =

where B2 \/A(z") + eLX"e,n and

2(Diagonal(a))(z' — z")E (', ") — J"[S"]'E0%, if i < n,

< 0(,0 ,n
Vl.nezTiZ"exn = z (iE » L )
—2J"§"! : if i=n
20<xn717 xn)
and
1 20(330’ CL‘”)
VB =2 (e + T a") F | Ve(a) —20(8 |
Zo(il,‘"_l, fL’")

Proof. The proof is given in Appendix A.2.
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4.4. Maximizing the KGCP. We begin by giving an illustrative example of the
KGCP on a one-dimensional Gaussian process with normally distributed observation
noise with a variance of 0.1. Figure 4.2(a) shows the results of the estimate of the func-
tion after four observations along with the actual observations. Figure 4.2(b) shows both
the KGCP and the exact knowledge gradient over a finely discretized set of decisions.
The knowledge gradient is larger at decisions with more uncertainty as well as points
where the estimate of the function is larger. We can see that the knowledge gradient is
nonconcave and seems to have local minima near previously sampled points. Further-
more, many of the local maxima appear to be approximately halfway between previously
sampled points.

In Figure 4.2(c) and (d) we show the estimate of the function and knowledge gra-
dient after nine observations. Again the knowledge gradient is not concave, but many of
the local maxima appear to be approximately halfway between previously sampled
points. In higher dimensions, a gradient ascent algorithm started multiple times is ap-
propriate for approximately maximizing a nonconcave continuous function.

We now have an objective that can be quickly evaluated along with its gradient
at any decision z. We propose using a multistart gradient ascent algorithm with

KG after 4 Observations
—KGCP

Plot of p4(x) and Observations
3 0.14

= Truth
— Estimate 0.12
2 ----95% ClI

0.1

0.08

KG

0.06

0.04

0.02

KG after 9 Observations

Plot of ug(x) and Observations

2 0.02
= Truth —KGCP
P . _~~|—Estimate ---KGCB
151 7 @O 7 |-=--95% CI
[ ~ o 0.015}
1
()
x
X (O]
o 0.5 < 0.01 I’A\\ )
........ 1\ /]
-------- 1 \ !
0 1 [} !
/ \ /
\ y 0.005} |1 \ N !
\, / 1 1 Y I
-0.5 , / 1 1 AN ! \
AN /! I \ ] \ ! “
. J I J \ K \
1 S, /, 1 \ / \
"o 5 10 15 0 5 10 15

Fic. 4.2. (a) The estimate of the function along with the 95% confidence intervals of the estimate after 4
observations. (b) The KGCP and exact knowledge gradient over a finely discretized set of decisions (KGCB)
after 4 observations. (c) The estimate of the function after 9 observations. (d) The knowledge gradient after 9
observations.
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TABLE 4.2
The KGCP policy.

yforn=0,...,N—1

) Choose sampling decision: " € arg max,cy V<%"(z) using section 4.4.
) Get noisy observation §"*! of function at z".

) Update u"*! and ="*! using (3.9) and (3.10).

) end

) Implement z* € arg max,cy u ().

(1
(2
(3
(4
(
(

5
6

constraints for the domain. Heuristically, as suggested above, there is likely to be a local
maximum roughly halfway between two previously sampled points. Furthermore, we
have a good guess at a starting step size that will keep our algorithm looking in the
region between these two previously sampled points based on the distance between
the two points. We can calculate all the midpoints between the set of sampled points
and use them as starting points of our gradient ascent with a fixed step size chosen such
that the magnitude of the first step is one-fourth of the Euclidean distance between the
two corresponding previously sampled points. We also choose to start the gradient as-
cent algorithm at the previously sampled decisions. These points are likely to be very
close to a local minimum and are thus reasonable starting locations for a gradient ascent
algorithm, although a reasonable starting step size is more ambiguous. We can then take
the maximum over all of the restarts to approximately get the overall maximum of the
KGCP. We perform (}) + n restarts which may become computationally expensive as n
grows large. Alternatively we could maximize the KGCP over a set of candidate points
chosen by a Latin hypercube sampling (LHS) design or use a genetic algorithm (see [9]).
It is worth noting that it is not critical to get the exact maximum of the KGCP in order
to determine the next sampling decision. There are likely several distinct points that are
worth sampling, and it may be acceptable if on one iteration the algorithm chooses a
point which does not exactly maximize the KGCP.

4.5. The KGCP policy. We now give an outline of the KGCP policy in Table 4.2.
In line 2 we choose the sampling decision by maximizing the KGCP defined in (4.1). This
maximization should be approximated by using the algorithm in section 4.4. Also, the
maximization in line 6 to find the implementation decision cannot be explicitly solved
either. We approximate the solution using a multistart gradient ascent algorithm with
the same starting points used in section 4.4. The gradient of " (z) can be evaluated
using Lemma 4.3. If no prior knowledge about the parameters is available, an initial
phase of sampling decisions chosen following an LHS can be run before starting the
KGCP policy as suggested in a similar context in [17].

In general we will not be given the parameters of the covariance function « and g,
the variance of observation noise A(), or the mean of the initial prior distribution on pu,
w1%(). If these parameters are not known, a step should be added before line 2 for
estimating the covariance function parameters using maximum-likelihood estimation,
maximum a posterior estimation (see [31]), or robust parameter estimation (see
[39]). For example, we can approximately maximize the likelihood over the parameters
by using patternsearch() in MATLAB started at multiple points chosen by an LHS
design using the command lhsdesign().

5. Convergence. In this section we show that, although the KGCP can be re-
garded as a near-sighted objective for finding the maximum of u(z), the KGCP policy
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searches enough so that uncertainty of the regression function converges to zero almost
surely for each decision as the number of sampling decisions and observations increases
to infinity. Note that additional conditions would need to be specified before making the
claim about the consistency of the posterior and finding the maximum of p(z) almost
surely in the limit. The proof is based on the fact that the KGCP of each decision con-
verges to zero as the number of iterations of the algorithm goes to infinity. We then show
that this implies that the conditional variance of u at every observation converges to
zero; in other words, we become certain of u at every point. We define Var"[-], Cov"[],
and Corr"[-] as Variance|- |F"], Covariance|- |F"], and Correlation|- |F"], respec-
tively. For simplicity in this section we assume that the variance of the observation noise
is a constant. Our presentation will need the following assumptions.

Assumption 5.0.1. A(z) =1 > 0, u°(z) = u°, and the estimates of a, B, 4, and u°
are fixed.

Assumption 5.0.2. lim sup,_, |#™(z) — ™ (u)| is bounded for every z,u € X al-
most surely.

Assumption 5.0.3. For any = # u 3¢ such that lim sup,_,.|Corr"[u(z), u(uw)]| <
¢ < 1 almost surely.

Assumption 5.0.4. We can exactly maximize the KGCP; 2" € arg max,cy v

PRroPOSITION 5.1. For every sample path, the KGCP of a decision z, v¥%"(z), con-
verges to zero if the conditional variance of u(x) converges to zero.

Proof. We first need an upper bound on the KGCP. We show in Appendix A.3 that

(5.1) PG (g) < ZBV#W

Combining the fact that the KGCP is nonnegative and that the upper bound of the KGCP
n (5.1) decreases to zero as Var®[u(z)] — 0, we obtain the desired result. |

The next proposition provides a way to put an upper bound on the conditional var-
iance of u near an accumulation point z%¢“ of the sampling decisions. Figure 5.1 has a
diagram of the points being considered. z%¢¢ is an accumulation point of the sampling
decisions. z¢ is an arbitrary fixed point in an open ball centered around z%¢¢ with radius
€; we are interested in Var[u(z?)]. 2" is a point we consider measuring multiple times.
x is a point which is closer to z¢ than ™" is close to z? in terms of the initial covar-
iance; formally, Z0(z™", z7) < £0(2"¢e", z¢). We denote an open ball centered at a with
radius € as B(a,¢) = {z|d(z, a) < €}.

near

ﬂ() — EO(‘/L.mult’ .Ed)
ﬂl — EO(:L,mulf,7 Inear)

ﬂ2 — E(J(.,Eneur7 .’L’d)

mult

acc

Fic. 5.1. A diagram of the points: x%° is an accumulation point; & is a point being measured multiple
times; £ is a point near = which we consider measuring; z is an arbitrary fired point in the open ball
centered at x“°“.
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PRroPOSITION 5.2. Fiz € > 0 and consider an arbitrary point x* € B(z°°, €), where
B(z%¢,€) is an open ball centered at x°°¢ with radius €. If we have measured n points
in the ball B(z%,€), an upper bound on the conditional variance of ju(x?) can be con-
structed by hypothetzcally measuring one particular point £™ n times, where ™" sa-
tisfies 0(z™, 27) < £9(z, 2%) Vo € B(2°°¢, €). Furthermore, the upper bound on the
conditional variance of ju(z%) is B — (Z°(z™*, 29))? a7 Jor every sample path.

Sketch of proof. (See Appendix A.4 for full proof.) We wish to find an
upper bound on the conditional variance of u(z%) which will converge to zero as n —
oo and € — 0. The ordering of the decision-observation pairs can be changed without
altering the conditional variance of u(z?), and the conditional variance of u(z?) is a
decreasing sequence. Therefore, after we have measured n points in B(z%¢ e€),
max, . . eB(ce) Var' [u(z?)] is an upper bound on the conditional variance of
w(z%); we have 1gn0red the decisions outside of B(x%¢, ¢) because they would only lower

the conditional variance more. We define the policy 7™ which sets 2° =-..=
7"l =™ We can derive that under the policy 7™ Var'u(z)] = B—
(20( mult I))Q ﬂ77+/1'

First, consider the change Var"[u(z?)] — Var™™[u(z?)] under 7™ if we have
measured 27 n times and then measure = one more time. We define
Bo = Z0(z™*, x7). The decrease in the conditional variance of u(z?) from measuring
™ once more is

mult

piA

(5.2) Vartl@d] = Var @ = o pmp 2

Second, we consider measuring the change in Var"[u(z?)] — Var™{u(z?)] if we have
measured 2" n times and then measure z"°“" one time where 2"°“" satisfies
20(gmult, gy < EO0(gmeer z4). "¢ can be thought of as a point close to z¢ because
w (2" has a higher initial covariance with pu(z?) than p(2™"“") does. We define g, =
Z0(gmult grear) and By = (3¢, 29). Note that By < B, and 0 < B, B1. B2 < B;
Figure 5.1 visually shows the relationships between the points. The decrease in the con-
ditional variance of u(z?) from measuring z"¢*" is

n 2 nB2 -1
63 Vel - Vo e = (g - 20 ) (5 L a)

We want to show that if we have measured z™*/
else) then the amount we can lower the conditional variance of i (z?) by observing z
again given in (5.2) is smaller than the amount given in (5.3) if we observe a new point
™", We verify that this is true algebraically in Appendix A.4. We have shown that, for
any n > 0, if we have sampled the decisions °, ..., 2" ! = 2" then the additional
decrease in the conditional variance of wu(z?) would be smallest by setting
z" = ™" This is true for n = 0,1,2, ..., so using an induction argument this proves
that max, . epgoeq Var'[n(z?)] equals Var®[u(z?)] under 7™, where g™/
satisfies 0 (gmult, ) < 20z, z?) Vz € Bz, €). As explained above,
MaX, . . eBae) Var"[u(xd)] is an upper bound on the conditional variance of
(1 (z9) after we have measured n points in B(z%,€) (and possibly more points outside
B(z¢,¢)). Under w™ Var'[u(z?)] = p — (Z° (™4 xd))zﬂriﬁ which gives us the
upper bound. 0

n times (and measured nothing
mult
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ProposiTiON 5.3. Let ¢ be an accumulation point of the sequence of sampling de-
cisions {z"}>°,. Consider a point z? € B(x%,€) using the Euclidean distance. Then

lim,_,., Var" [;L( D) < B — B exp(—83 ", ae?) for every sample path.
Proof. We first show that Var®[u (md)] converges because it is a decreasing se-

quence that is bounded below by zero. If we measure z" at time n, the equation for
the conditional variance becomes

(54) Zn+1($d, :L’d) — Z"(xd, ..'I,’d) _ (Zn(xn’ xd))Q(E"(.’L‘", .’L‘") + j’)—l

The second term in (5.4) is clearly positive and thus "+ (z¢, z¢) < ="(z?, z¢). Now, n is
arbitrary, so we can conclude that Var"[u(z?)] is a decreasing sequence bounded below
by zero. We define Var>[u(z?)] as the limit of Var"[u(z?)].

2%¢¢ is an accumulation point, so for all € > 0 there are an infinite number of n’s with
1" € B(z°°°, ). We now put an upper bound on Var"[u(z%)]. Under the policy 7™ of
measuring only 2% we can see that

0( .mult 2
lim Var™™fu(z)] = p — 0

n—o0 /3

Let {k,};°, be a subsequence of natural numbers such that the policy 7 chooses
z* € B(z% €) Vn. Let 2™ satisfy Z0(z™ z?) < 3(z,29) Vz € B(2%*“,¢). Using
Proposition 5.2, we see that

n

(5‘5) Var”’k”[u(xd)] § VGT’”"“L“‘”[M(md)] — IB _ (Z(](Jcmu”,xd))Zm-

Now, letting n go to infinity we get

0 mult .fL’d 2
Var<u(@)] = lim Var = {u(e)] = lim Varehu(e)] < p— =2

n—00 n—00 B

(5.6)

This equation holds for any z™“# which satisfies 0(z™", z%¢¢) < 20(z, 1%¢°)
Vz € B(z%,¢€) for a fixed € > 0. We next take the supremum over all such 2" to
obtain

ar>® ¢ su _M
Var=[u(a)] < p)(ﬂ )

z€B(z“ e ﬂ
) (20(z, 2%))?
B
. (z,—at)?
S _ 1nf‘,l;€B<z.am . (/36 i—1 @ ;,) )2
B
(BT
B

Equation (5.7) uses the fact that (z; — z¢)? < 4¢? because z, 2¢ € B(z%“, €) using the
Euclidean distance. d

COROLLARY 5.4. Since Proposition 5.3 was true for an arbitrary € >0 and
lim, .o 8 — Be 8Tm®%€ =0, we can conclude that lim,,_, ., Var™[pu(z€)] = 0.

(5.7) <p- = B — BeSTimie,
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We now want to show that the KGCP of the points being sampled as n goes to
infinity gets arbitrarily close to zero.

THEOREM 5.5. Using the KGCP policy, lim inf, . sup,cy VEG"
sample path.

Proof. Using (5.1) from the proof of Proposition 5.1, we put an upper bound on the
KGCP at zm,

() =0 for every

o < 2 [EVar ()
(5.8) pKG.n( )gm 3 .

First, the sequence of sampling decisions is a bounded sequence in R? and thus has
an accumulation point z9°¢. Also, the sequence {sup,cy V54" (2)}%, is a nonnegative
sequence because the KGCP is nonnegative. Let {k,}>°, be a subsequence of
natural numbers such that the KGCP policy chooses zf» € B(z%°, ¢) Vn. Now using
Proposition 5.3 we write lim,_,.. Var"[u(z")] < g — Be 8T Combining this with
(5.8) we get

V k” kn
0 < lim inf 7K€+ (¢) < lim inf pVartp(an)]

2
n—00 n—oo /2 A

<2 \/ﬁ(ﬂ—ﬂe‘sﬂl‘wz)
T V2w A '

Since this equation was true for an arbitrary €>0 and lim,,,(2/
V2r) \/ﬂ(ﬂ — Be 8TL%€) /A =0, we can conclude that lim inf, ., PKGFa (k) = 0.

This implies that lim inf,_,. %%"(2") = 0 as well because the lim inf of a sequence
is less than or equal to the lim inf of one of its subsequences. Recalling that under
the KGCP policy vX%"(3") = sup,cr ¥X%"(z) by Assumption 5.0.4 and because
&G (7) is continuous and X is compact, we arrive at the desired result. O

For the following theorems we need Assumption 5.0.2 that prevents the updated
mean from approaching infinity or negative infinity. We need Assumption 5.0.3 which
ensures the function does not become perfectly correlated at two different decisions; this
seems intuitive but is not trivial to prove.

THEOREM 5.6. If Assumptions 5.0.1, 5.0.2, 5.0.3, and 5.0.4 are satisfied and if
lim inf, . sup,cy VX4"(2) = 0, then Var™(u(z)) converges to zero for all z.
Proof.

l_)KG’"’(:E)

= ]E[ max w"t(z)|F", 2" = x} — max pm(z)|*="
1=0 n =0 n

AAAAAAAAAA

(5.9) = ]E[ %1axn,u”+1(x7:)|.7:", "= a:} —max(pu"(z"), u"(z))

> E[max(u" ™ (z), w" (2))|F"] — max(u"(z"), u"(z))
= E[max (u"(2"") + 6+ (", 2) 2", ™ (z) + 6, (2", 2) 2" | F"]
() 1 ()

= E[max (a; + b; 2", ay + by, Z"*1)] — max(ay, ay)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/21/13 to 128.112.66.10. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

THE KNOWLEDGE GRADIENT FOR CONTINUOUS PARAMETERS 1013

ay—a

JEE (ag + byz) f(2)dz + [ (a1 + b12) f(2)dz — max(ay, ap) if by < by,
e

moa
S5 (ay + by2) f(2)dz + fL (ag + by2)f(2)dz — max(ay, ap) if by < by

aQCI)<b =5 ) - bqu( ) + a1< <Zf:g§>> + b1¢<‘;fi§j> —max(ay, ap) if by < by,

(1 >7b1¢ )+a2< <%>)+b2¢<“2 ‘>7max(a1,a2) if by < by
:a2®(\blfh2>+al 1-— (|b17b9>>

+ b — b2|¢< > max(ay, ay)

lag — a1 lay — ai]
11 =—lay — || ——F by —b .
(5.11) lag — ay ( b1 — byl + |by — bagp 5, — b

In (5.9), we define ¢* = arg max;_ 1 1" (z). In (5. 10) for convenience, we define
ap = u"(z2"), ay = 6+ (", x), by = u"(x), and by = G,(X", ). The term in (5.11) is non-
negative and decreases as |ay — a1| increases or |b; — b2| decreases. Equation (5.11)
holds for all decisions z. Now, assume there is a decision z? such that
lim,, o, Var"[u(z")] = €; > 0. This limit exists because Var®[u(z")] is a decreasing
sequence bounded below by zero as shown in (5.4). Then (5.11) becomes

pKG.n( by “lun(2h) — wn(z _|Mn(xb) I‘Ln(xl*)l
Koo > (o) = e o G )

(512) + |&i*(in’xbl) 67z(in’xbl)|¢< 5. ‘/f (Z’l))_un(xl )‘ >

Now, by Assumptions 5.0.2 and 5.0.3, ¢y, ¢y such that

lim sup|u™(z) — (2| < ¢ < o0,

n—oo

lim sup Corr"[u(zb), u(z")] < ¢y < 1.

n—oo
We can now put a lower bound on |6 (Z", ") — G, (X", z")):

|6+ (2", a") — 6, (E", a™)]

_ [Varm[u(a")] — Cov'[u(z™), p(a")]]
A+ Var"[u(z bl)]

Var[u(z")] — Corr"[u(z \/Va'r" N Var[u(z")]
/3

v

/1+

_ (1= Corrlu(@"). p(a"Der
- A+ p

And now taking the limit inferior, we get
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_ _ 1— n by i*
lim inf|G+(Z", 2%) — 6,(Z", %) > lim inf (1 = Corrlp(a™), pla" ey
n—00 n—00 A+ /3

Co€
A+ B

:Cg>0.

>

Going back to (5.12) and taking the limit inferior, we can now write

(5.13) lim inf 587 (a7) > —Clq)(_c—Cl) + 6345(%) > 0.
3 O

n—0o0 3

By assumption the limit inferior of the supremum of the KGCP over all decisions is zero,
and thus (5.13) provides a contradiction. O

COROLLARY 5.7. Under the KGCP policy, if Assumptions 5.0.1, 5.0.2, 5.0.3, and
5.0.4 are satisfied, then lim,,_,. Var*[u(z)] =0 for all x.

Proof. Combining Theorems 5.5 and 5.6 we are left with the desired result. |

6. Numerical results. In thissection we give an illustrative example of the KGCP
policy as well as analyzing its performance on several standard test functions. We first
illustrate the KGCP policy on the two-dimensional Branin function and set the variance
of the normally distributed observation noise to one (4 = 1). We plot the true Branin
function in Figure 6.1. We stick with the more conservative convention of an initial LHS
design using two times the number of dimensions plus two (2p + 2) used in [11] ([23]
suggests using 10p). After every observation we estimate the parameters (¢, B, 4,
and p°) with maximum likelihood estimation. Our estimate of the function after the
initial six observations is shown in Figure 6.2(a), and the KGCP for each decision is
shown in Figure 6.2(b). The KGCP is higher at decisions that have higher estimates,
more uncertainty, or both. At this point, after each observation, we update our estimate
of the parameters and then choose our sampling decision by maximizing the KGCP. We
repeat this several times, and Figure 6.3 shows the estimate of the function after 20 total
observations chosen with the KGCP policy. Comparing these estimates with the true

Negative Branin Function Contours
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400 200 5 \ -200
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Fic. 6.1. (a) The negative of the Branin function. (b) A contour plot of the negative Branin function. We
will maximize the negative of the Branin function using noisy observations normally distributed around the true
function.
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Plot of u® and Actual Observations KGCP after 6 Observations
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Fic. 6.2. (a) The estimate of the function after 6 observations. The actual observations are plotted as well.
(b) The KGCP surface is plotted. The height is a measure of how much we expect the mazimum of the estimate
of the function to increase by measuring the corresponding decision. We choose the next sampling decision by
finding the decision which mazimizes the KGCP shown in (b).

function shown in Figure 6.1, we visually see that the policy has done a good job esti-
mating the upper regions of the function as desired.

6.1. Standard test functions. Next, we compare the KGCP policy with SKO
from [16] on expensive functions with observation noise. We use the various test func-
tions used in [11], [17], and [16] as the true mean and add on normally distributed
observation noise with variance 1. We define the opportunity cost as

(6.1) OC = max p () — p(i%),

where 7* = arg max; " (%), and Table 6.1 shows the performance on the different func-
tions. These functions were designed to be minimized, so the KGCP policy was applied
to the negative of the functions. Each policy was run 500 times with the specified amount
of observation noise. Table 6.1 gives the sample mean and sample standard deviation of
the mean of the opportunity cost after 50 iterations for each policy. (To get the sample

Plot of “20 and Actual Observations
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Fic. 6.3. (a) The estimate of the function after 20 observations. The actual observations are plotted as
well. (b) The contour plot of the estimate of the function after 20 observations.
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standard deviation of the opportunity cost you would multiply by v/500.) The means of
the opportunity costs which are significantly better (using Welch’s ¢ test at the .05 level
(see [45])) are in italics. The results are given for different levels of noise; 4 is the
variance of the normally distributed noise in the observations. Because a Gaussian pro-
cess is only an approximation (a surrogate) for the preceding test functions, we next
apply KGCP and SKO to functions that are guaranteed to be GPs. Each GP row of
Table 6.1 summarizes the results of running the policies on 500 GPs created as follows:
a function was generated from a one-dimensional GP with the specified parameters of
the covariance matrix in (3.2) over a 300 point grid on the interval [0,15]. The standard
deviation of each function o is given as well to give a frame of reference for the values
of A. This number was created by taking the standard deviation of function values
over a discretized grid. For all these runs (even the Gaussian process surfaces) an
initial LHS design of 2p 4 2 function evaluations is used and maximum likelihood es-
timation is performed after each iteration to update the estimates of o, 8, A, and u°
(see [31]).

KGCP and SKO appear to have similar performance on Hartman 3 and six hump
camelback test functions. However, the KGCP policy does significantly better on the
Ackley 5 and Branin test functions as well as on most of the Gaussian process functions.
To get an idea of the rate of convergence of the KGCP policy, we plot the performance
on the Gaussian processes in Figure 6.4. These promising simulations demonstrate that
the KGCP algorithm is a very competitive policy.

TABLE 6.1
Performance on standard test functions. Each row summarizes 500 runs of each policy on the specified
test function with the specified observation noise variance. We define 6(OC) as Std(E(OC)) and Med as the
median OC.

KGCP SKO
Test function V2 E(0OC) o(0C) Med E(0C) o(00) Med
Ackley 5 (X = [~15,30]%) Vi1 5.7304 1874 4.0964 7.8130 1802 6.4978
V1.0 10.8315 2413 10.5855  12.6346 2088  13.3955
p=50=1126 V100 17.3670 1477 183281 18.1126 1156 18.6481
Branin V1 0141 .0044 .0046 .0460 .0023 .0302
V1.0 0462 .0039 .0234 1284 0218 0737
p=20=>51.885 10.0 .2827 .0186 .1386 4396 .0248 .2685
Hartman 3 Vi1 L0690 .0063 .0249 1079 .0075 .0650
V1.0 5336 .0296 12658 5012 0216 3737
p=30=.938 10.0 1.8200 0541 1.6182 1.8370 0510 1.6552
Six hump camelback Vi1 0714 .0087 .0698 1112 .0059 .0797
V1.0 .3208 0192 1315 .3597 .0156 .2035
p=20=3181 10.0 1.0264 .0391 .8641 .8488 0370 6585
GP (¢ =.1, B = 100) Vi1 .0076 .0057 .0000 0195 .0041 .0043
V1.0 .0454 .0243 .0018 .0888 0226 0182
p=1,0=28417 V10.0 .3518 0587 .0337 12426 0216 0535
GP (¢ =1, B =100) Vi1 0077 .0022 .0000 0765 0311 .0000
V1.0 0270 .0045 .0000 1993 .0486 0255
p=1,0=09.909 V10.0 4605 1028 .0489 6225 .0669 1558
GP o =10, B = 100 Vi1 1074 .0259 .0000 5302 0799 .0000
V1.0 1846 .0286 .0000 6638 .0839 .0839
p=1, 0=10.269 10.0 1.0239 11021 .1415 1.8273 .1450 .6290
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Fic. 6.4. (a)—(c) show examples of Gaussian processes with the given covariance parameters. (d)—(f) show
the mean opportunity cost of the KGCP policy on the various Gaussian processes.

7. Conclusion and future work. The KGCP is applicable to problems with con-
tinuous decision variables and observation noise and is similar to the expected improve-
ment used in EGO when there is no observation noise. We presented a gradient ascent
algorithm to approximately maximize the KGCP. The KGCP policy is very competitive
with SKO and has nice convergence theory, giving conditions under which our uncer-
tainty about the maximum of the expensive function with observation noise disappears.
Extensions could include additional research with a priori distributions as well as addi-
tional approximations to speed up computations as the number of observations get
large. Additional issues for further investigation are evaluating the algorithm on pro-
blems with larger dimensions p and applying the algorithm on problems with unequal
variances in the observation noise.

Appendix A.

A.1. Computing V,.pu"(x’). If i <n, then u does mnot depend on z" so
V,u™(z') = 0. Now, consider when i = n. We start with (3.9) for p"(z") where z"
has not been sampled and then simplify:

I
/’L"(xn) _ ,bLO(:L’”) 4 err{+1io _ [Sn]—l@n
T

_
0
— MO(ZJL) _‘_20(350795/”), ...,20(1}"71,1‘")[5"]71@".

Now, because [S"]71" does not depend on the decision z", we can easily take the
gradient:

wa,u"(x") — Vr"ﬂo(xn) + [VIWLZO(IL’O, Z’"), e vﬂcwz:()(z.nfl7 xn)HSn]flgn
(A1) = Vou(z") + J°[S" 715",
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where J" is defined as in (4.15). When going from (4.15) to (4.16) we used the fact that
the covariance function was of the form specified in (3.2).
A.2. Computing V,.6;(X",x"). First, recall that
~ o 677‘271 €qn .
(A.2) G,(Z" a") = L , 1=0,...,n.
Az™) + el Ee,n

After we derive the gradient of the numerator and denominator of this equation, we can
find the gradient of (A.2) by using the quotient rule for differentiation:

v B (in n) \/},(.Z'n) + eg:linel.nvzn ezj;inezn — e;ineznvzn\ / },(J,‘n) + egninezn
0 , ') = .

|A(z") 4 eL e,

A.2.1. The numerator. First, we consider the numerator of (A.2):

— - — -
(A.3) elZe, = el (I — K"[1,]0])Z¢e,0

(A.4) = 750, — eLK"[I,[0]% e,
I, .
_N0(,i pn TS0 | _ n]—1 50
(AB) =32 (fE , L ) — em,Z o7 [S ] [[n|0}2 €n
2()($0’ xn)
(A.6) =3, z") — [Z(2°, 2%), ..., 202", 2?)] (9" ! :
ZO(In—l I")
ZO(ZL'O, 1.7)
(A7) — 20<1’i, {ﬂ") _ [EO(CEO, Z’"), o, EO(‘T"—l7 Z’")} [Sn]—l :
Z()(xnfl, $Z>

In (A.3) we used the definition of £ in (3.10). From (A.4) to (A.6) we just inserted the
definition of K™ given in (3.8). Going from (A.6) to (A.7) we took the transpose of the
last term which is a scalar and used the fact that [S"]7! is symmetric. We first consider
the case where ¢ < n. In this case

(29, 27)
[Sn]fl — [Sn]flz() ey
Zo(xnfl’ .I’i)
and does not depend on x" so we can easily compute the gradient
VpelEh e = V,uE0(ah, ") — V,u20(a0, 2"), ..., VuZ0(a" L am)[S"] 71,
(A.8) = 2DIAG(a) * (2! — 2")Z°(%, 2") — J"[S"] 71X,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/21/13 to 128.112.66.10. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

THE KNOWLEDGE GRADIENT FOR CONTINUOUS PARAMETERS 1019

Now, we consider the case where ¢ = n. Using standard matrix differentiation, we can
compute the gradient:

[ 20z 2™y | ]
0—25% ,lZo(m z"), ...,0211 20zt zm)[S7) L
20(zm1, zm)
Vn eﬁ,i"exu =
20(20, ")
0— 261” 20(z0, z), . ..,%1120(35”’1, ") [S"]!
L 20(:[:7171, :En) ]
£0(0, z7)
= =2V, 202" 2"), ..., V202"t 2")[S"] L
X0(zm L, )
20(2Y, z)
= —2J"[5" ! :
20(z" L, )

A.2.2. The denominator. Now, we consider the denominator of (A.2):

Aa™) + el Zre,n

(Ag) — \//1 + 6 n I Kn[.[n|0])2 6 n
(A10) = \a(e") + 22, 2 — eL KO, 0],

In N
(A11) = |A(z") + 20", ") — e Z0 | = | [S"] M Ia|0]E0 e,

0

ZO(ZEO, In)
— /1(1’”) + EO(CL‘", l’") _ [20(1;0’ CL’"), ol ZO(CL‘"_l, ZL’")HS"]_l :
20(1.71,71’ xn)

In (A.9) we inserted the definition of £” given in (3.10). Going from (A.10) to (A.11) we
inserted the definition of K" given in (3.8). Now, we take the gradient:
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r ZO(.T,O..T,”) 1
%(/1(.’17”) +Zn(mn~mn)>7% %;J(mn) _ ZF?(‘ZU(”U.JJI). o %;‘Zn(mn—l,mn)[sn]—l
_20(1"71, I”) ]
Vor/A(z") + el Zre, =
i 0(a0, zm) 1
%(l(l‘ﬂ)+zlb(z”~zn)>*% ﬁ)},’ﬂ(z") 723%’:20(1.0’zn)’ L %Z“(I”’l,x”)[s”]’l
20(zm1, zm)

= 5 (e + 3, am) (wwv

20(1.0, I")
— 2[v1n20(1‘0, 2, ., vT”ZU(mnA. xn)][sn]—l |: . :| )

>0 (In—l , In)

20(4,”0’ Tn)
(A(a") + £ (z" a")) (vm(zn) —2Jn[5"]! { : } ) .

EO(In—l. 1‘")

| =

A.3. Proof of Proposition 5.1. We derive the upper bound of the KGCP given in

(5.1), starting with

(A12) E |: %’lax 'un+1 (:LJ)'JTT)7 = JE:|
i=0,..., n
(A13) =E |:_I[1]’laX M"(agl) + &l(in, .’17")Zn+1|.7:", o= :l

< max p,"(xi)—&-E{maX G;(Z", am) Zm Y Fr, g = }

= max pu"(z') +E{ nax 6;(E", 2" 212 > 0)

—+ i IglaX 6]‘7(272 :IZ”)Z7L+11(Z"+1 g 0)|f’n’ " = .’L':|
=0,..., n

i=0,..., n 7=0,..., n

, 1 N .
_ n( il . b _ 1
o z:r(IllaXnﬂ (.T ) + 2 j=0...., n 7 2 k=0,..., n

We now need an upper bound on |6,;(£", z")| in (A.14). We just note that
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_ e jine .,
o, (2", 2")| = I—f
_ Cov™ [ ) (xn)]‘
A+ Var|u(z")]
_ Corr® [ ( ,,u/( n \/Var" ( 7)] Var"[,u(x")]
A+ Var|pu(z")]
|V Var @] Var u(e)]
a \/Z
(A.15) _¢Vmwmﬂwmwmum,

Combining (A.14) and (A.15) we have an upper bound on the KGCP:

PKG () < 2 \/VW"[/L(%")} Vartp(z")] _ \/2/3 Var"[p(a")]

max
)

~ 21 j=0....

2p Var"[u(z)]

(A.16) -

The KGCP is nonnegative, and the above upper bound on the KGCP of a decision z
converges to zero as the conditional variance of u(z) converges to zero.

A.4. Proof of Proposition 5.2. We derive how the conditional variance of u (z¢)
decreases if we repeatedly measure a particular point %" n times with noise variance 4
for each observation. We define the policy 7" which sets 2 =...= g1 = gmult,
Under this policy we see

>"(z, )

=elSre,
(A1) =R = K] 0)E e
(A.18) — 2z, 2) — el K[1,]0]%%

(7, z) — eI [ﬁ’; [S"]YI,|0]
0

(Alg) ZO(CEO, CE)

=X(z,2) — [Z(a" ), ... 20(a" 1, 2)][S"] :

20(3;1%1’ .73)
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[ 2920, 2)
=3z, z) — [Z°(a0, ), ..., Z0(2x" L, o)|[Z0 + AL, )T
_20(2"71, .1?)
) EO(xmult’ I)
ﬁ /3 -1
(A.20) =B — [zt z), ... 2@ ]| | . | +Al,
B B
2[)(I.mult, .’L')
1 -1 -1
=p— ((amx)eT B T | AL e
1 1
g (3O mult 2T
(A21) =pB— (™" 2)) Bnti

In (A.17) we insert the definition of £" given in (3.10). In (A.18) we insert the definition
of K™ given in (3.8). [S"]~! is positive semidefinite, so the second term in (A.19) is non-
negative. In (A.20) e is a column vector of ones, and we simplify the expression using the
definition of the inverse of S™:

1 ... 1
[ B AL =
1 1
T |
e[S B L e AL, |e=eTTe,
1 - 1
7[5! [Bre + ae] = n.
n
(A.22) ef[S" e = B+ i

First, consider the change Var"[u(z?)] — Var" ' [u(z?)] if we have measured 2™ n
times, and then measure 2™ one more time. We use (A.21) and assume
20(z, z) = B Vz. Also, define B, = X°(z™"", z4). The decrease in the conditional var-
iance of w(z%) from measuring 2™ once more is

Var[u(a®)] - Var[u(a?)

(A.23) ]
=(B-Bin(np+24)7") = (B-Bi(n+1)((n+1)p+2)7")
=Bi(n+1)((n+1)B+2)~" — Bin(np + )™
_ Bi(n+1)(np+2) — Bin((n+1)B + 1)
(n+1)B+A)(nB+2)
(A.24) = i

(n+1)B+A)(nB+4)

In (A.23) we just used (A.21) which gives an expression for Var™[u(z)] if we measure
™ p times and nothing else. Second, we consider measuring the change in
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Var"[g(z?)] — Var"*![i(z?)] if we have measured 2 n times and then measure 7"
one time, where z"°" € B(z%, ¢) and satisfies (2™, z4) < £0(z"¢%" 2?). We define
B1 = Z0(z™mult, greer) and By, = Z0(z™¢", 2). Note that B, < B, and 0 < B, B1. B2 < B.

Zn+1 (CCd, .Td)

(A25) — Zn(xd, CL'd) _ Zn(xnem" l.rl)(zn(l.near, x'ﬂ,{i(LT‘) + /1) lzn( near CL’d)

L l’d .I’d) (2"( ne(u (1)) (Zn( rLear near) +ﬂ)

= ”(xd, T
20 near. nz()(l,mult )ZO( mult xnear))Z(zn (xnedr nedl) N l)
nf + A1
(A.26) YR . »
— Zn(l‘d, Id) _ (:32 _ n‘B +/1> <:3 _ (20(I7nult7 xnear))? nIB 7 +/1>
2 2 —1
w0 P

In (A.25) we use the recursive equation for updating the conditional variance. In (A.26)
we plugged in the equation for £"(z"°*", 2¢) which is derived in the same way as (A.21).
Equivalently we can write

2 -1
) Varuteh] - V) = (5522 (5 - 55 +4)

mult p times, the amount we can lower

again given in (A.24) is smaller than
near.

We now want to show that if we have measured z
the conditional variance of i (z?) by observing 2™/
the amount given in (A.27) if we observe a new point

nBoh1 > npi -
<’32 - nﬂ0+14> (‘3 Y H”)
_ (ﬂQ(”ﬂ +4) — ”ﬁoﬂ1>2<(.3 +A)(nB + 1) — nﬁf) -
np + 4 nf + 4
(B2(nf + 1) — nBoB1)?
~ (B + (B +A)(nB +2) —np?)
(Bo(np +2) — nBoB1)?
(4.28) = TaB + (B + D(nB + 2) —nf)
(Bo(nB +2) — nfop)*
(

(4.29) = B+ (B T DB 1 4) — nf?)
B BiA?
 (nBHA)(npA+ BA+12)

(A.30) Pt

T B+ A((n B+ A)
In (A.28) we replaced B, with the smaller B. This is valid because the overall term is

positive and the numerator is nonnegative because B, < B, and 8; < 8. In (A.29) we
replaced 8, with the larger 8. This is valid because the derivative of (A.28) with respect
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to B is negative. Using the quotient rule the derivative of (A.28) with respect to 8,
becomes

(nB +2)((B+2)(np +2) — np1)2(Bo(n +4) — nﬂoél)(*nﬂo) — (Bo(nB +4) — nBoB1)* (nB + 2)(—2np,)

n(nf +2)c > (((B + ) (n +2) — nB7)(Bo(nB +2) — nBoB1)(—Bo) — (Bo(nB +2) — nfof1)*(—B1))

n(nf +2)c > ((Bo(nf +2) — nBoB1)*B1 — (B +A)(nB +2) — np?)(Bo(nB + 1) — nBoB1)Bo)

n(nf +A)c2((nf + 42— np1)*B5B1 — (B +A)(nB +2) — nB)(nf + 2 — np1)B7)

n(nf +2)c>Bi(np + 2 — npr)((nB + 24— np1)By — ((B+2A)(nf +2) — np?))
( )e
( )

n(nB + )¢ 2B5(np + A —nB1)((nB +2)B1 — (B + ) (nB + 1))
n(np + )2 ¢ 25 (nf + 4 —npy) (b1 — B —4)

>0 >0 >0

2
2
2
2
2
2

<0.

We have now shown that if we have measured 2™ n times, the amount we can
lower the conditional variance of i (z?) by observing 2" again given in (A.24) is smal-
ler than the amount given in (A.27) if we observe a new point z"“". This is true
for n=0,1,2,..., so using an induction argument we see that max,
T, 1 € B(z%,€) Var"[u(z?)] equals Var"[u(z?)] under z™#. 0O
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