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Abstract. We extend the concept of the correlated knowledge-gradient policy for the ranking and selec-
tion of a finite set of alternatives to the case of continuous decision variables. We propose an approximate
knowledge gradient for problems with continuous decision variables in the context of a Gaussian process
regression model in a Bayesian setting, along with an algorithm to maximize the approximate knowledge gra-
dient. In the problem class considered, we use the knowledge gradient for continuous parameters to sequen-
tially choose where to sample an expensive noisy function in order to find the maximum quickly. We show that
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rithm proposed in [D. R. Jones, M. Schonlau, and W. J. Welch, J. Global Optim., 13 (1998), pp. 455–492].
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1. Introduction. Our goal is to find the global maximum of a real valued contin-
uous function that is expensive to compute and that can only be evaluated with uncer-
tainty. We need an algorithm that can give satisfactory results with as few function
evaluations as possible. For this reason, we are willing to spend extra time deciding
where we would like to evaluate the function next. This problem arises in applications
such as simulation optimization, the design of machinery, medical diagnostics, biosur-
veillance, and the design of business processes.

We extend the concept of the knowledge-gradient policy for correlated beliefs
(KGCB) described in [10] and [11], originally developed to find the best of a finite
set of alternatives, to problems where we are trying to optimize over a multidimensional
set of continuous variables. The KGCB policy maximizes the marginal value of a single
measurement and has produced very promising results in discrete ranking and selection
problems without requiring the use of any tunable parameters. In [11] the KGCB policy
is used in a simulation optimization application to tune a set of continuous parameters
which must be discretized to perform the search. However, the KGCB policy becomes
computationally too expensive when it is necessary to discretize over a large multidi-
mensional vector. We extend the knowledge gradient to multidimensional continuous
problems and then show that the knowledge-gradient concept is at least competitive
with, or outperforms, specialized algorithms for specific problems.

Although the concept for the knowledge gradient is very general, we choose to model
the function to be optimized using Gaussian process regression with a squared exponen-
tial covariance function and model the noise in the observations as additive Gaussian
noise. The knowledge gradient for continuous parameters (KGCP) policy that we
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propose extends the well-known efficient global optimization (EGO) algorithm in [17] to
the case of noisy observations. When choosing a sampling decision, the KGCP accounts
for the fact that an additional observation will update the regression function at un-
sampled decisions as well as at the sampling decision; the updated best decision will
not necessarily be the current best decision or sampling decision.

This paper makes the following contributions: (1) We propose an approximation to
the knowledge gradient for multidimensional continuous decision variables which can be
efficiently computed. (2) We describe a gradient ascent algorithm that can be used to
maximize the KGCP without resorting to discretization. (3) We prove that, under mild
conditions, the KGCP policy applied to maximizing a continuous function with obser-
vation noise will cause the uncertainty in the regression model to disappear in the limit.
(4) We examine the competitive performance with sequential kriging, a widely used
algorithm which lacks our theoretical guarantees, on a series of test functions.

This paper is organized as follows. Section 2 reviews the literature for continuous
global optimization problems. Section 3 describes the Bayesian model capturing our
prior belief in the function being optimized. We review the knowledge gradient for dis-
crete alternatives, which guides measurements by computing the marginal value of in-
formation. Section 4 describes how the knowledge gradient can be computed for
continuous measurements. The KGCP is then compared to the expected improvement
in [17]. Our approach requires approximating the knowledge gradient as a continuous
function, and we derive a gradient ascent algorithm for this purpose. In section 5 we give
mild conditions under which the posterior variance at each decision in the regression
model will go to zero almost surely when using the KGCP policy for finding the global
maximum of a function with observation noise. Finally, section 6 compares the KGCP to
sequential kriging optimization (SKO) [16], which is a popular algorithm for determin-
ing sequential measurements in the presence of noise, on a set of test functions.

2. Literature review. We briefly present and summarize some of the current ap-
proaches to maximizing an expensive function with observation noise. The applications
are vast, and multiple research disciplines have addressed the problem. Simulation opti-
mization covers gradient-based methods (see [33], [18], [40], [13], and [34]), direct search
methods (see [40]), and metaheuristics (see [12]). The term model-based optimization can
be used to categorize the fields of trust regions (see [30], [5], [4], and [7]), response surface
methodology (see [2], [15], [27], [28], [29], and [32]), and the surrogate management frame-
work (see [1]). Finally, Bayesian global optimization consists of algorithms which combine
Bayesian models of the function with single-step look ahead criteria.

Bayesian global optimization takes a statistical approach to optimizing functions
efficiently (see [36]). One of the first approaches in the field was [21] that approximates
a one-dimensional function with aWiener process and uses a probability of improvement
criterion to choose the next point to sample. [41] uses the probability of improvement
concept for higher dimensions in the P-algorithm. [46] as well as [26] and [22] also use a
one-dimensional Wiener process but then use expected improvement criteria to choose
the next point to sample; they discuss convergence in the case of no observation noise.
For the case of no observation noise, [35] introduces the popular design and analysis of
computer experiments kriging model to approximate the expensive function; a kriging
model is a method of interpolation based on random spatial processes (see [24], [6], [19],
and [20]) and is referred to as Gaussian process regression in computer science (see [31]).
[17] presents the EGO algorithm for optimizing expensive functions without noise which
combines a kriging model with an expected improvement criterion (also see [37] and
[38]). Work has been done in [42] to prove convergence for an expected improvement
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algorithm in the case of no observation noise if the true function comes from a reprodu-
cing kernel Hilbert space generated by the covariance function. Another example of
Bayesian global optimization is [14] which combines radial basis interpolation and a
utility function based on the uncertainty of the response surface weighted by how close
the response surface’s value at that point is to a specified target value.

Recent extensions of Bayesian global optimization explicitly account for observa-
tion noise, although limited convergence theory has been developed for the following
algorithms. In [16], SKO combines a kriging model with an expected improvement cri-
terion which accounts for noisy function observations; the expected improvement cri-
terion is weighted by a term that favors decisions with higher uncertainty. One challenge
of SKO, like many other Bayesian global optimization algorithms, is maximizing the
expected improvement criterion to find the next sampling decision; the Nelder–Mead
simplex method is suggested. [44] and [43] present an informational approach to global
optimization which combines a kriging model, Monte Carlo, and other approximation
techniques to estimate the distribution of the global minimizer of the function after an
additional observation. The sampling decision is made by minimizing the entropy
(which can be interpreted as uncertainty) of the global minimizer. The approaches
in [8] and [9] address the issue of different levels of noise using an expected improvement
criterion with kriging models found in [6] which allow for noisy observations.

3. The model. We consider the following optimization problem:

arg max
x∈X

μðxÞ;ð3:1Þ

where x ∈ Rp is a decision vector, X is a compact feasible set of decisions, and μ∶Rp → R1

is a continuous function we wish to maximize. Let ŷnþ1 be the sample observation of the
sampling decision xn for n ¼ 0; : : : ; N − 1. The variance of an observation, given μ, at a
decision x is λðxÞ, andwe assume λ∶Rp → R1 is continuously differentiable over the domain
X and is known. In practice, the variance of the observation noise is unknown but can be
estimated. We assume ŷnþ1 has a normal distribution centered around the true function,

ŷnþ1jμ; xn ∼N ðμðxnÞ; λðxnÞÞ;

and ŷ1; : : : ; ŷNþ1 are independent given μ and x0; : : : ; xN . (This assumption would be
violated if using the method of common random numbers (see [3]).) Our goal is to sequen-
tially choose xn at each iteration n ¼ 0; : : : ; N − 1 in order to approach the solution to
(3.1) as quickly as possible.

Adopting a Bayesian framework, we start with some belief or information about the
truth, μ. We treat μ as a random variable and assign it a Gaussian process (GP) prior
density. μn is the updated mean of our random variable, given n observations. Then, for
any x0; : : : ; xn ∈ X , our a priori distribution is ½μðx0Þ; : : : ;μðxnÞ�T ∼N ðμ0ð½x0; : : : ; xn�Þ;
Σ0ð½x0; : : : ; xn�ÞÞ, where μ0ð½x0; : : : ; xn�Þ ¼ Eð½μðx0Þ; : : : ;μðxnÞ�T Þ and Σ0ð½x0; : : : ;
xn�Þ ¼ Covð½μðx0Þ; : : : ;μðxnÞ�T Þ. Next, we define a filtration Fn, where Fn is
the sigma-algebra generated by x0; ŷ1; : : : ; xn−1; ŷn. We define μnð½x0; : : : ; xn�Þ ¼
Eð½μðx0Þ; : : : ;μðxnÞ�T jFnÞ and Σnð½x0; : : : ; xn�Þ ¼ Covð½μðx0Þ; : : : ;μðxnÞ�T jFnÞ for
x0; : : : ; xn ∈ X . In addition we use the notation Σnðx0; x1Þ ¼ Covðμðx0Þ;μðx1ÞjFnÞ.

The multivariate normal distribution is a natural conjugate family when the
observations come from a normal distribution with known variance. This means our
posterior is also multivariate normal. Hence, conditioned on Fn, ½μðx0Þ; : : : ;μðxnÞ�T∼
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N ðμnð½x0; : : : ; xn�Þ;Σnð½x0; : : : ; xn�ÞÞ. Next, we explain a method to assign the initial
covariance between μðx0Þ and μðx1Þ.

3.1. Covariance structure. In order to specify the covariance matrix for our a
priori distribution of μ at x0; : : : ; xn ∈ X , it is sufficient to specify a covariance function.
Similarly to [35] and [11], we assume a Gaussian covariance function. Letting x0 and x1

be arbitrary decisions in X , we write,

Covðμðx0Þ;μðx1ÞÞ ¼ β exp

�
−
Xp
i¼1

αiðx0i − x1i Þ2
�
; α > 0; β > 0;ð3:2Þ

where α ∈ Rp is called the activity of μ and β ∈ R1 controls the uncertainty of our belief
about μ. The initial covariance function given in (3.2) is a metric, meaning the covariance
of two decisions decreases as the distance between them increases. The parameter αi for
i ¼ 1; : : : ; p is called the activity in dimension i and represents how smooth μ is in di-
mension i (see [17]). For example, a very small αi would make the covariances bigger,
indicating that μ is believed to be very smooth in dimension i. The key idea is that
the true function should be positively correlated at nearby points. For example, if
μðxÞ is greater thanμ0ðxÞ, then, for small δ ∈ Rp, we should expectμðxþ δÞ to be great-
er than μ0ðxþ δÞ as well, assuming μ is smooth. [31] explains that Gaussian processes
with this covariance function are very smooth because they have mean square derivatives
of all orders.

3.2. Updating equations. After the first n sampling decisions, the distribution of
½μðx0Þ; : : : ;μðxn−1Þ�T conditioned on Fn is multivariate normal and hence completely
characterized by μnð½x0; : : : ; xn−1�Þ and Σnð½x0; : : : ; xn−1�Þ, which can be calculated as
follows in (3.6) and (3.7). For a fixed n, define the matrix Σ0 ¼ Σ0ð½x0; : : : ; xn−1�Þ which
can be calculated using (3.2). Given the assumptions in our model, we can use the
Kalman filter equations in [25], or equivalently the Gaussian process regression equa-
tions given in [31], to compute the posterior distribution of μ given Fn. We calculate the
measurement residual ~yn and the residual covariance Sn as

~yn ¼

2
64 ŷ1

..

.

ŷn

3
75−

2
64 μ0ðx0Þ

..

.

μ0ðxn−1Þ

3
75;ð3:3Þ

Sn ¼ Σ0 þDiagonalð½λðx0Þ; : : : ; λðxn−1Þ�Þ:ð3:4Þ

We can then calculate the optimal Kalman gain using

Kn ¼ Σ0½Sn�−1:ð3:5Þ

Note that if the minimum value of the observation noises λmin is strictly positive, ½Sn�−1 is
well defined because the minimum eigenvalue of Sn is greater than or equal to λmin. Let
I n be an n× n identity matrix. Finally, the updated expected values of μ at the first n
sampled points, and the covariance matrix of μ at the first n sampled points, condi-
tioned on Fn, are given, respectively, by2

64 μnðx0Þ
..
.

μnðxn−1Þ

3
75 ¼

2
64 μ0ðx0Þ

..

.

μ0ðxn−1Þ

3
75þKn ~yn;ð3:6Þ
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Σn ¼ ðI n −KnÞΣ0:ð3:7Þ

The above equations update the distribution of μ at the first n sampling decisions con-
ditioned on Fn, but we also need to update the distribution of μðxÞ conditioned on Fn,
where x ∈ X is an arbitrary decision variable that has not been sampled yet. We can
do this with the following equations. Define Σ̄0 ¼ Σ0ð½x0; : : : ; xn−1; x�Þ and Σ̄n ¼
Σnð½x0; : : : ; xn−1; x�Þ, and let 0

→
be a column vector of zeros. Our new optimal Kalman

gain is given by

K̄n ¼ Σ̄0

2
4 I n

−
0
→T

3
5½Sn�−1:ð3:8Þ

We can now update μ0 and Σ̄0 with the following equations:

2
6664

μnðx0Þ
..
.

μnðxn−1Þ
μnðxÞ

3
7775 ¼

2
6664

μ0ðx0Þ
..
.

μ0ðxn−1Þ
μ0ðxÞ

3
7775þ K̄n ~yn;ð3:9Þ

Σ̄n ¼ ðI nþ1 − K̄n½I nj0
→�ÞΣ̄0:ð3:10Þ

If we explicitly want the distribution of μðxÞ conditioned on Fn at some arbitrary
decision x, we can pull out the pertinent formulas from (3.9) and (3.10):

μnðxÞ ¼ μ0ðxÞ þ Σ0ðx0; xÞ; : : : ;Σ0ðxn−1; xÞ½Sn�−1 ~yn;ð3:11Þ

Σnðx; xÞ ¼ Σ0ðx; xÞ− ½Σ0ðx0; xÞ; : : : ;Σ0ðxn−1; xÞ�½Sn�−1

2
64 Σ0ðx0; xÞ

..

.

Σ0ðxn−1; xÞ

3
75:ð3:12Þ

Equation (3.11) is a linear smoother ifμ0ðxÞ ¼ 0 ∀x and is referred to as Gaussian process
regression in [31] and regressing kriging in [9]. There are also recursive equations equiva-
lent to (3.9) and (3.10) which update μn and Σn (see [11]). [11] shows that after we have
selected our sampling decision xn but before we observe ŷnþ1, our updated regression func-
tion is normally distributed conditioned on the information available at iteration n:

2
6664

μnþ1ðx0Þ
..
.

μnþ1ðxn−1Þ
μnþ1ðxnÞ

3
7775 ¼

2
6664

μnðx0Þ
..
.

μnðxn−1Þ
μnðxnÞ

3
7775þ ~σðΣ̄n; xnÞZnþ1;ð3:13Þ

where Znþ1 ¼ ðŷnþ1 − μnðxnÞÞ ∕ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðxnÞ þ Σnðxn; xnÞp

, with

~σðΣ; xÞ ≜ Σexffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðxÞ þ eTx Σex

p .ð3:14Þ
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Here ex is a column vector of zeros with a 1 at the row corresponding to decision x. It can
be shown that Znþ1 ∼N ð0; 1Þ because Varðŷnþ1 − μnðxnÞjFnÞ ¼ λðxnÞ þ Σnðxn; xnÞ.

3.3. The knowledge-gradient policy. The knowledge-gradient policy as de-
scribed in [11] for discrete X is the policy which chooses the next sampling decision
by maximizing the expected incremental value of a measurement. The knowledge gra-
dient at x, which gives the expected incremental value of the information gained from a
measurement at x, is defined as the following scalar field:

νKG;nðxÞ ≜ E

�
max
u∈X

μnþ1ðuÞjFn; xn ¼ x

�
−max

u∈X
μnðuÞ:ð3:15Þ

The knowledge-gradient policy chooses the sampling decision at time n by maximizing
the knowledge gradient,

xn ∈ arg max
x∈X

νKG;nðxÞ:ð3:16Þ

By construction, the knowledge-gradient policy is optimal for maximizing the max-
imum of the predictor of the GP if only one decision is remaining. [11] shows that in the
case of a finite set of decisions, the knowledge-gradient policy samples every decision
infinitely often as the number of sampling decisions goes to infinity; in other words,
the knowledge-gradient policy finds the best decision in the limit. In addition, [11] shows
that the knowledge-gradient policy is consistently competitive with or outperforms SKO
on several test functions.

The knowledge gradient can be explicitly computed when the feasible set of
decisions X is finite (see [11]). In the case where X is continuous, if p is small and X
is bounded, then X can be discretized, allowing for the use of the technique in [11]
for discrete decisions. However, the complexity of the calculation for this approximation
of the knowledge gradient grows exponentially with the number of feasible decisions jxj
because we must use a dense jxj× jxj covariance matrix in our calculation.

4. The KGCP. In this section we propose an approximation of the knowledge
gradient that can be calculated and optimized when our feasible set of decisions is
continuous. The approximation we propose can be calculated at a particular decision
x, along with its gradient at x, allowing us to use classical gradient-based search
algorithms for maximizing the approximation. This strategy avoids the need to discre-
tize the measurement space X into a large number of points to be evaluated. Further-
more, it scales to multidimensional parameter spaces which would be impossible to
discretize.

We form the KGCP by replacing the maximum over X ⊂ Rp with the maximum
over x0; : : : ; xn, the first n sampling decisions, and the current sampling decision,

ν̄KG;nðxÞ ≜ E

�
max

i¼0; : : : ;n
μnþ1ðxiÞjFn; xn ¼ x

�
− max

i¼0; : : : ;n
μnðxiÞjxn¼x:ð4:1Þ

We define the KGCP policy πKGCP as the policy which selects the next sampling decision
by maximizing the KGCP,
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Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

1/
13

 to
 1

28
.1

12
.6

6.
10

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



xn ∈ arg max
x∈X

ν̄KG;nðxÞ:ð4:2Þ

This approximation should improve as n increases and the maximization is taken over
more terms. The first remark is that the KGCP is nonnegative. The proof follows from
Jensen’s inequality

E

�
max

i¼0; : : : ;n
μnþ1ðxiÞjFn; xn ¼ x

�
¼E

�
max

i¼0; : : : ;n
μnðxiÞ þ ~σiðΣ̄n; xnÞZnþ1jFn; xn ¼ x

�
ð4:3Þ

≥ max
i¼0; : : : ;n

μnðxiÞjxn¼x þ ~σiðΣ̄n; xnÞE½Znþ1jFn; xn ¼ x�ð4:4Þ

¼ max
i¼0; : : : ;n

μnðxiÞjxn¼x:

In (4.3) we substituted in the recursive update forμnþ1ðxiÞ given in (3.13). ~σiðΣ; xÞ is the
ith element of ~σðΣ; xÞ which is defined in (3.14). In (4.4) we use Jensen’s inequality
with the convex function ϕðzÞ ¼ maxi¼0; : : : ;n μ

nðxiÞ þ ~σiðΣ̄n; xnÞz, where μnðxiÞ and
~σiðΣ̄n; xnÞ are constants since they are measurable with respect to Fn.

Also, comparing the terms that depend on x in the knowledge gradient and the
KGCP, we easily see that

E

�
max

i¼0; : : : ;n
μnþ1ðxiÞjFn; xn ¼ x

�
≤ E

�
max
u∈X

μnþ1ðuÞjFn; xn ¼ x

�
:ð4:5Þ

This fact follows trivially because the maximization in the left term is over a subset of
the set maximized over in the right term. Initially, at time n ¼ 0, the KGCP
becomes

ν̄KG;0ðxÞ ¼ E½μ1ðx0ÞjF 0; x0 ¼ x�− μ0ðx0Þjx0¼x ¼ μ0ðxÞ− μ̄0ðxÞ ¼ 0:

This shows that the KGCP policy is indifferent to the first sampling decision. At time
n ¼ 1, (4.2) becomes

x1 ∈ arg max
x∈X

�
E

�
max
i¼0;1

μ2ðxiÞjF 1; x1 ¼ x

�
−max

i¼0;1
μ1ðxiÞjx1¼x

�
:

At this point there is a trade-off between exploring and exploiting in our objective. Im-
plicitly, the algorithm would like to exploit, or sample near a current maximum of μn;
this seems likely to increase the maximum of μn. However, the algorithm would also like
to explore, i.e., sample far away from any of the previous decisions; these decisions have
more uncertainty and are less correlated with the current maximum of μn.

4.1. Comparison to the expected improvement of EGO. EGO is a method
developed in [17] to optimize functions when there is no observation noise. For function
maximization, EGO uses the expected improvement criterion E½I nðxÞjFn�, where the
improvement given the information available at time n is defined to be the following
random variable:

I nðxÞ ¼ max

�
μnþ1ðxÞ− max

i¼1; : : : ;n
ŷi; 0

�
:
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In [17], the EGO expected improvement is defined only in the case of no observation
noise, where λð·Þ ¼ 0. In this case, the KGCP is less than or equal to the EGO expected
improvement criterion. In fact, if the second maximization term in the KGCP in (4.1)
were over i ¼ 0; : : : ; n− 1, the KGCP would be equivalent to the expected improve-
ment in the case of no observation noise.

PROPOSITION 4.1. In the case of no observation noise, ν̄KG;nðxÞ ≤ E½I nðxÞjFn�.
Furthermore,

E½I nðxÞjFn� ¼ E

�
max

i¼0; : : : ;n
μnþ1ðxiÞjFn; xn ¼ x

�
− max

i¼0; : : : ;n−1
μnðxiÞ.

Proof.

ν̄KG;nðxÞ ¼ E

�
max

i¼0; : : : ;n
μnþ1ðxiÞjFn; xn ¼ x

�
− max

i¼0; : : : ;n
μnðxiÞjxn¼x

≤ E

�
max

i¼0; : : : ;n
μnþ1ðxiÞjFn; xn ¼ x

�
− max

i¼0; : : : ;n−1
μnðxiÞ

¼ E

�
max

�
μnþ1ðxnÞ; max

i¼0; : : : ;n−1
μnðxiÞ

�����Fn; xn ¼ x

�
− max

i¼0; : : : ;n−1
μnðxiÞð4:6Þ

¼ E

�
max

�
μnþ1ðxnÞ; max

i¼1; : : : ;n
ŷi
�����Fn; xn ¼ x

�
− max

i¼1; : : : ;n
ŷi

¼ E

�
max

�
μnþ1ðxnÞ− max

i¼1; : : : ;n
ŷi; 0

�����Fn; xn ¼ x

�
¼ E½I nðxÞjFn�:ð4:7Þ

In (4.6) we used the fact that, conditioned on Fn, ŷiþ1 ¼ μnðxiÞ ¼ μnþ1ðxiÞ for
i ¼ 0; : : : ; n− 1 since there is no observation noise. ▯

The EGO algorithm maximizes the expected improvement given in (4.7) at each
iteration which is similar to maximizing the KGCP at each iteration when there is
no observation noise.

4.2. Calculation of the KGCP. We will first show how to calculate the KGCP
and then derive the gradient of this continuous function that can be used in a steepest
ascent algorithm. The KGCP in (4.1) can be efficiently calculated at a particular x ∈ X
by using the two algorithms in [11], which we will now summarize. We define the pairs
ðai; biÞ for i ¼ 0; : : : ; n as the sorted pairs ðμnðxiÞ; ~σiðΣ̄n; xnÞÞ conditioned on Fn and
xn ¼ x for i ¼ 0; : : : ; n. The pairs ðai; biÞ are sorted such that bi ≤ biþ1 for
i ¼ 0; : : : ; n− 1. If there exists some i ≠ j such that bi ¼ bj and ai ≤ aj, then the pair
ðaj; bjÞ dominates ðai; biÞ, and the pair ðai; biÞ is added to a list of initially dominated
lines. The ai’s are the intercepts and the bi’s are the slopes of the lines in Figure 4.1(a).
Furthermore, we define A0 as the index map such that ðai; biÞ ¼ ðμnðxA0

i Þ; ~σA0
i
ðΣ̄n; xnÞÞ.

For a fixed xn ¼ x, ai and bi are Fn measurable and hence constants. We now simplify
the first term in the KGCP,

E

�
max

i¼0; : : : ;n
μnþ1ðxiÞjFn; xn ¼ x

�
¼E

�
max

i¼0; : : : ;n
μnðxiÞ þ ~σiðΣ̄n; xnÞZnþ1jFn; xn ¼ x

�
ð4:8Þ

¼ E

�
max

i¼0; : : : ;n
ai þ biZ

�
:ð4:9Þ
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In (4.8) we used the recursive update for μnðxiÞ given in (3.13). We next summarize the
two algorithms in [11] which show how to efficiently calculate the term in (4.9).

Algorithm 1 from [11] is a scan-line algorithm that replaces the maximization in
(4.9) with a piecewise linear function using indicator functions. In Algorithm 1, A1

is called the accept set and is a vector of indices which keeps track of all the i’s such
that line ai þ biz is part of the epigraph shown in Figure 4.1(a). We keep track of the
values of z where the lines intersect in a vector c. ciþ1 is the largest value of z such that
line ai þ biz is part of the epigraph shown in Figure 4.1(a). In terms of the lines in the
accept set A1, c1þA1

i
is the intersection of aA1

i
þ bA1

i
z and aA1

iþ1
þ bA1

iþ1
z. Solving for the

z such that these lines intersect we get c1þA1
i
¼ ðaA1

i
− aA1

iþ1
Þ ∕ ðbA1

iþ1
− bA1

i
Þ for i ¼

1; : : : ; ~n, where ~n is the length of A1 minus one. Also, we set c0 ¼ −∞ and
cnþ1 ¼ þ∞. For convenience, we define ~ai ¼ aðA1

i Þ,
~bi ¼ bðA1

i Þ, ~ciþ1 ¼ cð1þA1
i Þ, and ~c0 ¼

−∞ for i ¼ 0; : : : ; ~n. Algorithm 1 efficiently calculates constants ~c0; : : : ; ~c ~nþ1 and the
vector of indices A1 so that a function of the form f ðzÞ ¼ maxi¼0; : : : ;n ai þ biz can be
rewritten as f ðzÞ ¼ P

~n
i¼0ðaA1

i
þ bA1

i
zÞ1½ ~ci; ~ciþ1ÞðzÞ. The algorithm is outlined in Table 4.1

using the convention that the first index of a vector is zero.
Next, Algorithm 2 from [11] shows how to simplify the expectation in (4.10) to

(4.11), which is something we can easily compute.

FIG. 4.1. Algorithm 1 from [11] is a scan-line algorithm to reexpress f ðzÞ ¼ maxi¼0; : : : ;n ai þ biz as
f ðzÞ ¼ P

~n
i¼0ð ~ai þ ~bizÞ1½ ~ci; ~ciþ1ÞðzÞ.

TABLE 4.1
Summary of Algorithm 1 from [11].

(01) c0 ¼ −∞, cnþ1 ¼ þ∞, A1 ¼ ½0�
(02) for i ¼ 1∶n
(03) if ðai; biÞ not initially dominated
(04) loopdone ¼ false

(05) while loopdone ¼¼ false

(06) j ¼ A1ðendÞ
(07) cjþ1 ¼ ðaj − aiÞ∕ ðbi − bjÞ
(08) if lengthðA1Þ ≠ 1 & cjþ1 ≤ ckþ1 where k ¼ A1ðend− 1Þ
(09) Delete last element in A1.
(10) else add i to the end of A1.
(11) loopdone ¼ true
(12) end
(13) end
(14) end
(15) end
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E

�
max

i¼0; : : : ;n
ai þ biZ

�
¼ E

�X~n

i¼0

ðaA1
i
þ bA1

i
ZÞ1½ ~ci; ~ciþ1ÞðZÞ

�
ð4:10Þ

¼
X~n

i¼0

½aA1
i
P½Z ∈ ½ ~ci; ~ciþ1Þ� þ bA1

i
E½Z1½ ~ci; ~ciþ1ÞðZÞ��

¼
X~n

i¼0

½aA1
i
ðΦð ~ciþ1Þ−Φð ~ciÞÞ þ bA1

i
ðϕð ~ciÞ− ϕð ~ciþ1ÞÞ�:ð4:11Þ

In (4.11), ϕð·Þ andΦð·Þ are the probability density function and cumulative distribution
function of a standard normal random variable, respectively.

4.3. The gradient of the KGCP. Next, we show how to calculate the gradient of
the KGCP ∇xν̄

KG;nðxÞ at a fixed x ∈ X . This will allow us to use gradient ascent to
maximize the KGCP. Let A ¼ A0½A1�, meaning Ai ¼ A0

A1
i

; A is now a reordered index
set. For example, if A0 ¼ ½2; 1; 0� and A1 ¼ ½0; 2; 1�, then A ¼ ½2; 0; 1�. A contains the
indices i such that ðμnðxA0

i Þ þ ~σA0
i
ðΣ̄n; xnÞÞz is part of the epigraph of Figure 4.1(b)

for some value of z.
PROPOSITION 4.2. The gradient of the first term in (4.1) is given by

∇xE

�
max

i¼0; : : : ;n
μnþ1ðxiÞjFn; xn ¼ x

�

¼
X~n

i¼0

½ð∇xnμ
nðxAiÞÞðΦð ~ciþ1Þ−Φð ~ciÞÞ þ ð∇xn ~σAi

ðΣ̄n; xnÞÞðϕð ~ciÞ− ϕð ~ciþ1ÞÞ�

þ
X~n

i¼0

½ðμnðxAiÞ þ ~σAi
ðΣ̄n; xnÞ ~ciþ1Þϕð ~ciþ1Þ∇xn ~ciþ1 − ðμnðxAiÞ þ ~σAi

ðΣ̄n; xnÞ ~ciÞϕð ~ciÞ∇xn ~ci�:

Proof.

∇xE

�
max

i¼0; : : : ;n
μnþ1ðxiÞjFn; xn ¼ x

�

¼ ∇xn

X~n

i¼0

½μnðxAiÞðΦð ~ciþ1Þ−Φð ~ciÞÞ þ ~σAi
ðΣ̄n; xnÞðϕð ~ciÞ− ϕð ~ciþ1ÞÞ�ð4:12Þ

¼
X~n

i¼0

½ð∇xnμ
nðxAiÞÞðΦð ~ciþ1Þ−Φð ~ciÞÞ þ ð∇xn ~σAi

ðΣ̄n; xnÞÞðϕð ~ciÞ− ϕð ~ciþ1ÞÞ�

þ
X~n

i¼0

½μnðxAiÞ∇xnðΦð ~ciþ1Þ−Φð ~ciÞÞ þ ~σAi
ðΣ̄n; xnÞ∇xnðϕð ~ciÞ− ϕð ~ciþ1ÞÞ�

ð4:13Þ

¼
X~n

i¼0

½ð∇xnμ
nðxAiÞÞðΦð ~ciþ1Þ−Φð ~ciÞÞ þ ð∇xn ~σAi

ðΣ̄n; xnÞÞðϕð ~ciÞ− ϕð ~ciþ1ÞÞ�

þ
X~n

i¼0

½ðμnðxAiÞ þ ~σAi
ðΣ̄n; xnÞ ~ciþ1Þϕð ~ciþ1Þ∇xn ~ciþ1

− ðμnðxAiÞ þ ~σAi
ðΣ̄n; xnÞ ~ciÞϕð ~ciÞ∇xn ~ci�:

Equation (4.12) is just the gradient of (4.11). In (4.13) we used the product rule
because c0; : : : ; cnþ1 all depend on xn. In the last line we use the fact that
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∂
∂xΦðf ðxÞÞ ¼ ϕðf ðxÞÞ ∂

∂x f ðxÞ and ∂
∂xϕðf ðxÞÞ ¼ −ϕðf ðxÞÞf ðxÞ ∂

∂x f ðxÞ to differentiate the
second term. The first term in the final equation is analogous to (4.11) with the
scalars μnðxiÞ and ~σiðΣ̄n; xnÞ replaced with the vectors ∇xnμ

nðxiÞ and ∇xn ~σiðΣ̄n; xnÞ,
respectively. ▯

The calculation of ∇xn ~ci for i ¼ 0; : : : ; ~nþ 1 is relatively straightforward. An
equivalent equation for the ~ci’s which are output from Algorithm 1 is ~ci ¼ ~ai−1− ~ai

~bi− ~bi−1
for i ¼

1; : : : ; ~n with ~c0 ¼ −∞ and ~c ~nþ1 ¼ þ∞. Then using the quotient rule we can calculate
the following:

∇xn ~ci ¼
( ð ~bi− ~bi−1Þð∇ ~ai−1−∇ ~aiÞ−ð ~ai−1− ~aiÞð∇ ~bi−∇ ~bi−1Þ

ð ~bi− ~bi−1Þ2
for i ¼ 1; : : : ; ~n;

0
→

for i ¼ 0; ~nþ 1:
ð4:14Þ

As long as we can calculate ∇xnμ
nðxiÞ and ∇xn ~σiðΣ̄n; xnÞ for i ¼ 0; : : : ; n, we can

calculate the expression in Proposition 4.2 and the gradient of the KGCP. The equations
for these values are expressed in the next two lemmas.

LEMMA 4.3.

∇xnμ
nðxiÞ ¼

�
0
→

if i < n;
∇xnμ

0ðxnÞ þ Jn½Sn�−1 ~yn if i ¼ n;

where we let Jn be the following matrix of first-order partial derivatives:

Jn ¼ ½∇xnΣ0ðx0; xnÞ; : : : ;∇xnΣ0ðxn−1; xnÞ�ð4:15Þ

¼ 2

2
664
α1ðx01 − xn1 ÞΣ0ðx0; xnÞ · · · α1ðxn−1

1 − xn1 ÞΣ0ðxn−1; xnÞ
..
. . .

. ..
.

αpðx0p − xnpÞΣ0ðx0; xnÞ · · · αpðxn−1
p − xnpÞΣ0ðxn−1; xnÞ

3
775:ð4:16Þ

Proof. The proof is given in Appendix A.1.
LEMMA 4.4.

∇xn ~σiðΣ̄n; xnÞ ¼ B∇xne
T
xi
Σ̄nexn − eT

xi
Σ̄nexn∇xnB

B2 ;

where B ≜
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðxnÞ þ eTxn Σ̄

nexn
q

and

∇xne
T
xi
Σ̄nexn ¼

8>>>>><
>>>>>:

2ðDiagonalðαÞÞðxi − xnÞΣ0ðxi; xnÞ− Jn½Sn�−1Σ0exi if i < n;

−2Jn½Sn�−1

2
64 Σ0ðx0; xnÞ

..

.

Σ0ðxn−1; xnÞ

3
75 if i ¼ n

and

∇xnB ¼ 1

2
ðλðxnÞ þ Σnðxn; xnÞÞ−1

2

0
BB@∇xnλðxnÞ− 2Jn½Sn�−1

2
664

Σ0ðx0; xnÞ
..
.

Σ0ðxn−1; xnÞ

3
775
1
CCA:

Proof. The proof is given in Appendix A.2.
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4.4. Maximizing the KGCP. We begin by giving an illustrative example of the
KGCP on a one-dimensional Gaussian process with normally distributed observation
noise with a variance of 0.1. Figure 4.2(a) shows the results of the estimate of the func-
tion after four observations along with the actual observations. Figure 4.2(b) shows both
the KGCP and the exact knowledge gradient over a finely discretized set of decisions.
The knowledge gradient is larger at decisions with more uncertainty as well as points
where the estimate of the function is larger. We can see that the knowledge gradient is
nonconcave and seems to have local minima near previously sampled points. Further-
more, many of the local maxima appear to be approximately halfway between previously
sampled points.

In Figure 4.2(c) and (d) we show the estimate of the function and knowledge gra-
dient after nine observations. Again the knowledge gradient is not concave, but many of
the local maxima appear to be approximately halfway between previously sampled
points. In higher dimensions, a gradient ascent algorithm started multiple times is ap-
propriate for approximately maximizing a nonconcave continuous function.

We now have an objective that can be quickly evaluated along with its gradient
at any decision x. We propose using a multistart gradient ascent algorithm with

0 5 10 15
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µ4 (x
)

Plot of µ4(x) and Observations

Truth
Estimate
95% CI

0 5 10 15
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0.06
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K
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FIG. 4.2. (a) The estimate of the function along with the 95% confidence intervals of the estimate after 4
observations. (b) The KGCP and exact knowledge gradient over a finely discretized set of decisions (KGCB)
after 4 observations. (c) The estimate of the function after 9 observations. (d) The knowledge gradient after 9
observations.
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constraints for the domain. Heuristically, as suggested above, there is likely to be a local
maximum roughly halfway between two previously sampled points. Furthermore, we
have a good guess at a starting step size that will keep our algorithm looking in the
region between these two previously sampled points based on the distance between
the two points. We can calculate all the midpoints between the set of sampled points
and use them as starting points of our gradient ascent with a fixed step size chosen such
that the magnitude of the first step is one-fourth of the Euclidean distance between the
two corresponding previously sampled points. We also choose to start the gradient as-
cent algorithm at the previously sampled decisions. These points are likely to be very
close to a local minimum and are thus reasonable starting locations for a gradient ascent
algorithm, although a reasonable starting step size is more ambiguous. We can then take
the maximum over all of the restarts to approximately get the overall maximum of the
KGCP. We perform ðn2Þ þ n restarts which may become computationally expensive as n
grows large. Alternatively we could maximize the KGCP over a set of candidate points
chosen by a Latin hypercube sampling (LHS) design or use a genetic algorithm (see [9]).
It is worth noting that it is not critical to get the exact maximum of the KGCP in order
to determine the next sampling decision. There are likely several distinct points that are
worth sampling, and it may be acceptable if on one iteration the algorithm chooses a
point which does not exactly maximize the KGCP.

4.5. TheKGCPpolicy. We now give an outline of the KGCP policy in Table 4.2.
In line 2 we choose the sampling decision by maximizing the KGCP defined in (4.1). This
maximization should be approximated by using the algorithm in section 4.4. Also, the
maximization in line 6 to find the implementation decision cannot be explicitly solved
either. We approximate the solution using a multistart gradient ascent algorithm with
the same starting points used in section 4.4. The gradient of μN ðxÞ can be evaluated
using Lemma 4.3. If no prior knowledge about the parameters is available, an initial
phase of sampling decisions chosen following an LHS can be run before starting the
KGCP policy as suggested in a similar context in [17].

In general we will not be given the parameters of the covariance function α and β,
the variance of observation noise λðÞ, or the mean of the initial prior distribution on μ,
μ0ðÞ. If these parameters are not known, a step should be added before line 2 for
estimating the covariance function parameters using maximum-likelihood estimation,
maximum a posterior estimation (see [31]), or robust parameter estimation (see
[39]). For example, we can approximately maximize the likelihood over the parameters
by using patternsearch() in MATLAB started at multiple points chosen by an LHS
design using the command lhsdesign().

5. Convergence. In this section we show that, although the KGCP can be re-
garded as a near-sighted objective for finding the maximum of μðxÞ, the KGCP policy

TABLE 4.2
The KGCP policy.

(1) for n ¼ 0; : : : ; N − 1

(2) Choose sampling decision: xn ∈ arg maxx∈X ν̄KG;nðxÞ using section 4.4.
(3) Get noisy observation ŷnþ1 of function at xn.
(4) Update μnþ1 and Σnþ1 using (3.9) and (3.10).
(5) end
(6) Implement x⋆ ∈ arg maxx∈X μN ðxÞ.
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searches enough so that uncertainty of the regression function converges to zero almost
surely for each decision as the number of sampling decisions and observations increases
to infinity. Note that additional conditions would need to be specified before making the
claim about the consistency of the posterior and finding the maximum of μðxÞ almost
surely in the limit. The proof is based on the fact that the KGCP of each decision con-
verges to zero as the number of iterations of the algorithm goes to infinity. We then show
that this implies that the conditional variance of μ at every observation converges to
zero; in other words, we become certain of μ at every point. We define Varn½·�, Covn½·�,
and Corrn½·� as Variance½· jFn�, Covariance½· jFn�, and Correlation½· jFn�, respec-
tively. For simplicity in this section we assume that the variance of the observation noise
is a constant. Our presentation will need the following assumptions.

Assumption 5.0.1. λðxÞ ¼ λ > 0, μ0ðxÞ ¼ μ0, and the estimates of α, β, λ, and μ0

are fixed.
Assumption 5.0.2. lim supn→∞ jμnðxÞ− μnðuÞj is bounded for every x; u ∈ X al-

most surely.
Assumption 5.0.3. For any x ≠ u ∃c such that lim supn→∞jCorrn½μðxÞ;μðuÞ�j ≤

c < 1 almost surely.
Assumption 5.0.4. We can exactly maximize the KGCP; xn ∈ arg maxx∈X ν̄KG;nðxÞ.
PROPOSITION 5.1. For every sample path, the KGCP of a decision x, ν̄KG;nðxÞ, con-

verges to zero if the conditional variance of μðxÞ converges to zero.
Proof. We first need an upper bound on the KGCP. We show in Appendix A.3 that

ν̄KG;nðxÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βVarn½μðxÞ�

πλ

r
:ð5:1Þ

Combining the fact that the KGCP is nonnegative and that the upper bound of theKGCP
in (5.1) decreases to zero as Varn½μðxÞ� → 0, we obtain the desired result. ▯

The next proposition provides a way to put an upper bound on the conditional var-
iance of μ near an accumulation point xacc of the sampling decisions. Figure 5.1 has a
diagram of the points being considered. xacc is an accumulation point of the sampling
decisions. xd is an arbitrary fixed point in an open ball centered around xacc with radius
ϵ; we are interested inVar½μðxdÞ�. xmult is a point we consider measuring multiple times.
xnear is a point which is closer to xd than xmult is close to xd in terms of the initial covar-
iance; formally, Σ0ðxmult; xdÞ ≤ Σ0ðxnear; xdÞ. We denote an open ball centered at a with
radius ϵ as Bða; ϵÞ ¼ fxjdðx; aÞ < ϵg.

FIG. 5.1. A diagram of the points: xacc is an accumulation point; xmult is a point being measured multiple
times; xnear is a point near xd which we consider measuring; xd is an arbitrary fixed point in the open ball
centered at xacc.
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PROPOSITION 5.2. Fix ϵ > 0 and consider an arbitrary point xd ∈ Bðxacc; ϵÞ, where
Bðxacc; ϵÞ is an open ball centered at xacc with radius ϵ. If we have measured n points
in the ball Bðxacc; ϵÞ, an upper bound on the conditional variance of μðxdÞ can be con-
structed by hypothetically measuring one particular point xmult n times, where xmult sa-
tisfies Σ0ðxmult; xdÞ ≤ Σ0ðx; xdÞ ∀x ∈ Bðxacc; ϵÞ. Furthermore, the upper bound on the
conditional variance of μðxdÞ is β− ðΣ0ðxmult; xdÞÞ2 n

βnþλ for every sample path.
Sketch of proof. (See Appendix A.4 for full proof.) We wish to find an

upper bound on the conditional variance of μðxdÞ which will converge to zero as n →
∞ and ϵ → 0. The ordering of the decision-observation pairs can be changed without
altering the conditional variance of μðxdÞ, and the conditional variance of μðxdÞ is a
decreasing sequence. Therefore, after we have measured n points in Bðxacc; ϵÞ,
maxx0; : : : ;xn−1∈Bðxacc;ϵÞ Varn½μðxdÞ� is an upper bound on the conditional variance of
μðxdÞ; we have ignored the decisions outside of Bðxacc; ϵÞ because they would only lower
the conditional variance more. We define the policy πmult which sets x0 ¼ · · ·¼
xn−1 ¼ xmult. We can derive that under the policy πmult, Varn½μðxÞ� ¼ β−
ðΣ0ðxmult; xÞÞ2 n

βnþλ.
First, consider the change Varn½μðxdÞ�− Varnþ1½μðxdÞ� under πmult if we have

measured xmult n times and then measure xmult one more time. We define
β0 ¼ Σ0ðxmult; xdÞ. The decrease in the conditional variance of μðxdÞ from measuring
xmult once more is

Varn½μðxdÞ�− Varnþ1½μðxdÞ� ¼ β2
0λ

ððnþ 1Þβþ λÞðnβþ λÞ :ð5:2Þ

Second, we consider measuring the change in Varn½μðxdÞ�− Varnþ1½μðxdÞ� if we have
measured xmult n times and then measure xnear one time where xnear satisfies
Σ0ðxmult; xdÞ ≤ Σ0ðxnear; xdÞ. xnear can be thought of as a point close to xd because
μðxnearÞ has a higher initial covariance with μðxdÞ than μðxmultÞ does. We define β1 ¼
Σ0ðxmult; xnearÞ and β2 ¼ Σ0ðxnear; xdÞ. Note that β0 ≤ β2 and 0 < β0;β1;β2 ≤ β;
Figure 5.1 visually shows the relationships between the points. The decrease in the con-
ditional variance of μðxdÞ from measuring xnear is

Varn½μðxdÞ�−Varnþ1½μðxdÞ� ¼
�
β2 −

nβ0β1

nβþ λ

�
2
�
β−

nβ2
1

nβþ λ
þ λ

�−1

:ð5:3Þ

We want to show that if we have measured xmult n times (and measured nothing
else) then the amount we can lower the conditional variance of μðxdÞ by observing xmult

again given in (5.2) is smaller than the amount given in (5.3) if we observe a new point
xnear. We verify that this is true algebraically in Appendix A.4. We have shown that, for
any n ≥ 0, if we have sampled the decisions x0; : : : ; xn−1 ¼ xmult, then the additional
decrease in the conditional variance of μðxdÞ would be smallest by setting
xn ¼ xmult. This is true for n ¼ 0; 1; 2; : : : , so using an induction argument this proves
that maxx0; : : : ;xn−1∈Bðxacc;ϵÞ Varn½μðxdÞ� equals Varn½μðxdÞ� under πmult, where xmult

satisfies Σ0ðxmult; xdÞ ≤ Σ0ðx; xdÞ ∀x ∈ Bðxacc; ϵÞ. As explained above,
maxx0; : : : ;xn−1∈Bðxacc;ϵÞ Varn½μðxdÞ� is an upper bound on the conditional variance of
μðxdÞ after we have measured n points in Bðxacc; ϵÞ (and possibly more points outside
Bðxacc; ϵÞ). Under πmult, Varn½μðxdÞ� ¼ β− ðΣ0ðxmult; xdÞÞ2 n

βnþλ which gives us the
upper bound. ▯

1010 WARREN SCOTT, PETER FRAZIER, AND WARREN POWELL

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

1/
13

 to
 1

28
.1

12
.6

6.
10

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



PROPOSITION 5.3. Let xacc be an accumulation point of the sequence of sampling de-
cisions fxng∞n¼0. Consider a point xd ∈ Bðxacc; ϵÞ using the Euclidean distance. Then
limn→∞ Varn½μðxdÞ� ≤ β− β expð−8

Pp
i¼1 αiϵ

2Þ for every sample path.
Proof. We first show that Varn½μðxdÞ� converges because it is a decreasing se-

quence that is bounded below by zero. If we measure xn at time n, the equation for
the conditional variance becomes

Σnþ1ðxd; xdÞ ¼ Σnðxd; xdÞ− ðΣnðxn; xdÞÞ2ðΣnðxn; xnÞ þ λÞ−1:ð5:4Þ

The second term in (5.4) is clearly positive and thus Σnþ1ðxd; xdÞ ≤ Σnðxd; xdÞ. Now, n is
arbitrary, so we can conclude that Varn½μðxdÞ� is a decreasing sequence bounded below
by zero. We define Var∞½μðxdÞ� as the limit of Varn½μðxdÞ�.

xacc is an accumulation point, so for all ϵ > 0 there are an infinite number of n’s with
xn ∈ Bðxacc; ϵÞ. We now put an upper bound on Varn½μðxdÞ�. Under the policy πmult of
measuring only xmult we can see that

lim
n→∞

Varπ
mult;n½μðxÞ� ¼ β−

ðΣ0ðxmult; xÞÞ2
β

:

Let fkng∞n¼0 be a subsequence of natural numbers such that the policy π chooses
xkn ∈ Bðxacc; ϵÞ ∀n. Let xmult satisfy Σ0ðxmult; xdÞ ≤ Σ0ðx; xdÞ ∀x ∈ Bðxacc; ϵÞ. Using
Proposition 5.2, we see that

Varπ;kn ½μðxdÞ� ≤ Varπ
mult;n½μðxdÞ� ¼ β− ðΣ0ðxmult; xdÞÞ2 n

βnþ λ0
:ð5:5Þ

Now, letting n go to infinity we get

Var∞½μðxdÞ� ¼ lim
n→∞

Varπ;n½μðxdÞ� ¼ lim
n→∞

Varπ;kn ½μðxdÞ� ≤ β−
ðΣ0ðxmult; xdÞÞ2

β
:

ð5:6Þ

This equation holds for any xmult which satisfies Σ0ðxmult; xaccÞ ≤ Σ0ðx; xaccÞ
∀x ∈ Bðxacc; ϵÞ for a fixed ϵ > 0. We next take the supremum over all such xmult to
obtain

Var∞½μðxdÞ� ≤ sup
x∈Bðxacc;ϵÞ

�
β−

ðΣ0ðx; xdÞÞ2
β

�

¼ β−
infx∈Bðxacc;ϵÞðΣ0ðx; xdÞÞ2

β

≤ β−
infx∈Bðxacc;ϵÞðβe−

Pp
i¼1

αiðxi−xdi Þ2Þ2
β

≤ β−
ðβe−Pp

i¼1
αi4ϵ

2Þ2
β

¼ β− βe−8
Pp
i¼1αiϵ

2

:ð5:7Þ

Equation (5.7) uses the fact that ðxi − xdi Þ2 ≤ 4ϵ2 because x; xd ∈ Bðxacc; ϵÞ using the
Euclidean distance. ▯

COROLLARY 5.4. Since Proposition 5.3 was true for an arbitrary ϵ > 0 and
limϵ→0 β− βe−8

Pp
i¼1 αiϵ

2 ¼ 0, we can conclude that limn→∞ Varn½μðxaccÞ� ¼ 0.
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We now want to show that the KGCP of the points being sampled as n goes to
infinity gets arbitrarily close to zero.

THEOREM 5.5. Using the KGCP policy, lim infn→∞ supx∈X ν̄KG;nðxÞ ¼ 0 for every
sample path.

Proof. Using (5.1) from the proof of Proposition 5.1, we put an upper bound on the
KGCP at xn,

ν̄KG;nðxnÞ ≤ 2ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βVarn½μðxnÞ�

λ

r
:ð5:8Þ

First, the sequence of sampling decisions is a bounded sequence in Rp and thus has
an accumulation point xacc. Also, the sequence fsupx∈X ν̄KG;nðxÞg∞n¼0 is a nonnegative
sequence because the KGCP is nonnegative. Let fkng∞n¼0 be a subsequence of
natural numbers such that the KGCP policy chooses xkn ∈ Bðxacc; ϵÞ ∀n. Now using
Proposition 5.3 we write limn→∞ Varn½μðxknÞ� ≤ β− βe−8

Pp
i¼1

αiϵ
2
. Combining this with

(5.8) we get

0 ≤ lim inf
n→∞

ν̄KG;knðxknÞ ≤ lim inf
n→∞

2ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βVarkn ½μðxknÞ�

λ

s

≤
2ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðβ− βe−8

Pp
i¼1

αiϵ
2Þ

λ

s
:

Since this equation was true for an arbitrary ϵ > 0 and limϵ→0 ð2 ∕ffiffiffiffiffiffi
2π

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðβ− βe−8

Pp
i¼1 αiϵ

2Þ∕ λ
q

¼ 0, we can conclude that lim infn→∞ ν̄KG;knðxknÞ ¼ 0:

This implies that lim infn→∞ ν̄KG;nðxnÞ ¼ 0 as well because the lim inf of a sequence
is less than or equal to the lim inf of one of its subsequences. Recalling that under
the KGCP policy ν̄KG;nðxnÞ ¼ supx∈X ν̄KG;nðxÞ by Assumption 5.0.4 and because
ν̄KG;nðxÞ is continuous and X is compact, we arrive at the desired result. ▯

For the following theorems we need Assumption 5.0.2 that prevents the updated
mean from approaching infinity or negative infinity. We need Assumption 5.0.3 which
ensures the function does not become perfectly correlated at two different decisions; this
seems intuitive but is not trivial to prove.

THEOREM 5.6. If Assumptions 5.0.1, 5.0.2, 5.0.3, and 5.0.4 are satisfied and if
lim infn→∞ supx∈X ν̄KG;nðxÞ ¼ 0, then VarnðμðxÞÞ converges to zero for all x.

Proof.

ν̄KG;nðxÞ

¼ E

�
max

i¼0; : : : ;n
μnþ1ðxiÞjFn; xn ¼ x

�
− max

i¼0; : : : ;n
μnðxiÞjxn¼x

¼ E

�
max

i¼0; : : : ;n
μnþ1ðxiÞjFn; xn ¼ x

�
−maxðμnðxi⋆Þ;μnðxÞÞð5:9Þ

≥ E½maxðμnþ1ðxi⋆Þ;μnþ1ðxÞÞjFn�−maxðμnðxi⋆Þ;μnðxÞÞ
¼ E½max ðμnðxi⋆Þ þ ~σi⋆ðΣ̄n; xÞZnþ1;μnðxÞ þ ~σnðΣ̄n; xÞZnþ1ÞjFn�
−maxðμnðxi⋆Þ;μnðxÞÞ

¼ E½max ða1 þ b1Z
nþ1; a2 þ b2Z

nþ1Þ�−maxða1; a2Þ

ð5:10Þ
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¼

8>><
>>:

R a2−a1
b1−b2
−∞ ða2 þ b2zÞfðzÞdz þ

R∞
a2−a1
b1−b2

ða1 þ b1zÞfðzÞdz −maxða1; a2Þ if b2 ≤ b1;

R a2−a1
b1−b2
−∞ ða1 þ b1zÞfðzÞdz þ

R∞
a2−a1
b1−b2

ða2 þ b2zÞfðzÞdz −maxða1; a2Þ if b1 < b2

¼

8>><
>>:

a2Φ
�

a2−a1
b1−b2

�
− b2ϕ

�
a2−a1
b1−b2

�
þ a1

�
1−Φ

�
a2−a1
b1−b2

��
þ b1ϕ

�
a2−a1
b1−b2

�
−maxða1; a2Þ if b2 ≤ b1;

a1Φ
�

a2−a1
b1−b2

�
− b1ϕ

�
a2−a1
b1−b2

�
þ a2

�
1−Φ

�
a2−a1
b1−b2

��
þ b2ϕ

�
a2−a1
b1−b2

�
−maxða1; a2Þ if b1 < b2

¼ a2Φ
�
a2 − a1
jb1 − b2j

�
þ a1

�
1−Φ

�
a2 − a1
jb1 − b2j

��

þ jb1 − b2jϕ
�
a2 − a1
jb1 − b2j

�
−maxða1; a2Þ

¼ −ja2 − a1jΦ
�
−ja2 − a1j
jb1 − b2j

�
þ jb1 − b2jϕ

�ja2 − a1j
jb1 − b2j

�
:ð5:11Þ

In (5.9), we define i⋆ ¼ arg maxi¼0; : : : ;n−1 μ
nðxiÞ. In (5.10), for convenience, we define

a1 ¼ μnðxi⋆Þ, a2 ¼ ~σi⋆ðΣ̄n; xÞ, b1 ¼ μnðxÞ, and b2 ¼ ~σnðΣ̄n; xÞ. The term in (5.11) is non-
negative and decreases as ja2 − a1j increases or jb1 − b2j decreases. Equation (5.11)
holds for all decisions x. Now, assume there is a decision xb1 such that
limn→∞ Varn½μðxb1Þ� ¼ ϵ1 > 0. This limit exists because Varn½μðxb1Þ� is a decreasing
sequence bounded below by zero as shown in (5.4). Then (5.11) becomes

ν̄KG;nðxb1Þ ≥ −jμnðxb1Þ− μnðxi⋆ÞjΦ
�

−jμnðxb1Þ− μnðxi⋆Þj
j ~σi⋆ðΣ̄n; xb1Þ− ~σnðΣ̄n; xb1Þj

�

þ j ~σi⋆ðΣ̄n; xb1Þ− ~σnðΣ̄n; xb1Þjϕ
� jμnðxb1Þ− μnðxi⋆Þj
j ~σi⋆ðΣ̄n; xb1Þ− ~σnðΣ̄n; xb1Þj

�
:ð5:12Þ

Now, by Assumptions 5.0.2 and 5.0.3, ∃c1, c2 such that

lim sup
n→∞

jμnðxÞ− μnðxi⋆Þj ≤ c1 < ∞;

lim sup
n→∞

Corrn½μðxb1Þ;μðxi⋆Þ� ≤ c2 < 1:

We can now put a lower bound on j ~σi⋆ðΣ̄n; xb1Þ− ~σnðΣ̄n; xb1Þj:

j ~σi⋆ðΣ̄n; xb1Þ− ~σnðΣ̄n; xb1Þj

¼ jVarn½μðxb1Þ�− Covn½μðxb1Þ;μðxi⋆Þ�j
λþ Varn½μðxb1Þ�

≥
Varn½μðxb1Þ�− Corrn½μðxb1Þ;μðxi⋆Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varn½μðxb1Þ�Varn½μðxi⋆Þ�

q
λþ β

≥
ð1− Corrn½μðxb1Þ;μðxi⋆Þ�Þϵ1

λþ β
:

And now taking the limit inferior, we get
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lim inf
n→∞

j ~σi⋆ðΣ̄n; xb1Þ− ~σnðΣ̄n; xb1Þj ≥ lim inf
n→∞

ð1− Corrn½μðxb1Þ;μðxi⋆Þ�Þϵ1
λþ β

≥
c2ϵ1
λþ β

¼ c3 > 0:

Going back to (5.12) and taking the limit inferior, we can now write

lim inf
n→∞

ν̄KG;nðxb1Þ ≥ −c1Φ
�
−c1
c3

�
þ c3ϕ

�
c1
c3

�
> 0:ð5:13Þ

By assumption the limit inferior of the supremum of the KGCP over all decisions is zero,
and thus (5.13) provides a contradiction. ▯

COROLLARY 5.7. Under the KGCP policy, if Assumptions 5.0.1, 5.0.2, 5.0.3, and
5.0.4 are satisfied, then limn→∞ Varn½μðxÞ� ¼ 0 for all x.

Proof. Combining Theorems 5.5 and 5.6 we are left with the desired result. ▯

6. Numerical results. In this section we give an illustrative example of the KGCP
policy as well as analyzing its performance on several standard test functions. We first
illustrate the KGCP policy on the two-dimensional Branin function and set the variance
of the normally distributed observation noise to one (λ ¼ 1). We plot the true Branin
function in Figure 6.1. We stick with the more conservative convention of an initial LHS
design using two times the number of dimensions plus two (2pþ 2) used in [11] ([23]
suggests using 10p). After every observation we estimate the parameters (α, β, λ,
and μ0) with maximum likelihood estimation. Our estimate of the function after the
initial six observations is shown in Figure 6.2(a), and the KGCP for each decision is
shown in Figure 6.2(b). The KGCP is higher at decisions that have higher estimates,
more uncertainty, or both. At this point, after each observation, we update our estimate
of the parameters and then choose our sampling decision by maximizing the KGCP. We
repeat this several times, and Figure 6.3 shows the estimate of the function after 20 total
observations chosen with the KGCP policy. Comparing these estimates with the true

(a)
x

1

x 2

Negative Branin Function Contours

-5 0 5 10
0

5

10

15

-250

-200

-150

-100

-50

(b)

FIG. 6.1. (a) The negative of the Branin function. (b) A contour plot of the negative Branin function. We
will maximize the negative of the Branin function using noisy observations normally distributed around the true
function.
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function shown in Figure 6.1, we visually see that the policy has done a good job esti-
mating the upper regions of the function as desired.

6.1. Standard test functions. Next, we compare the KGCP policy with SKO
from [16] on expensive functions with observation noise. We use the various test func-
tions used in [11], [17], and [16] as the true mean and add on normally distributed
observation noise with variance λ. We define the opportunity cost as

OC ¼ max
i

μðiÞ− μði⋆Þ;ð6:1Þ

where i⋆ ¼ arg maxi μ
nðiÞ, and Table 6.1 shows the performance on the different func-

tions. These functions were designed to be minimized, so the KGCP policy was applied
to the negative of the functions. Each policy was run 500 times with the specified amount
of observation noise. Table 6.1 gives the sample mean and sample standard deviation of
the mean of the opportunity cost after 50 iterations for each policy. (To get the sample

FIG. 6.2. (a) The estimate of the function after 6 observations. The actual observations are plotted as well.
(b) The KGCP surface is plotted. The height is a measure of how much we expect the maximum of the estimate
of the function to increase by measuring the corresponding decision. We choose the next sampling decision by
finding the decision which maximizes the KGCP shown in (b).

x1

x 2

Estimate of Negative Branin

-5 0 5 10
0

5

10

15

-120

-100

-80

-60

-40

-20

FIG. 6.3. (a) The estimate of the function after 20 observations. The actual observations are plotted as
well. (b) The contour plot of the estimate of the function after 20 observations.
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standard deviation of the opportunity cost you would multiply by
ffiffiffiffiffiffiffiffi
500

p
.) The means of

the opportunity costs which are significantly better (using Welch’s t test at the .05 level
(see [45])) are in italics. The results are given for different levels of noise; λ is the
variance of the normally distributed noise in the observations. Because a Gaussian pro-
cess is only an approximation (a surrogate) for the preceding test functions, we next
apply KGCP and SKO to functions that are guaranteed to be GPs. Each GP row of
Table 6.1 summarizes the results of running the policies on 500 GPs created as follows:
a function was generated from a one-dimensional GP with the specified parameters of
the covariance matrix in (3.2) over a 300 point grid on the interval [0,15]. The standard
deviation of each function σ is given as well to give a frame of reference for the values
of λ. This number was created by taking the standard deviation of function values
over a discretized grid. For all these runs (even the Gaussian process surfaces) an
initial LHS design of 2pþ 2 function evaluations is used and maximum likelihood es-
timation is performed after each iteration to update the estimates of α, β, λ, and μ0

(see [31]).
KGCP and SKO appear to have similar performance on Hartman 3 and six hump

camelback test functions. However, the KGCP policy does significantly better on the
Ackley 5 and Branin test functions as well as on most of the Gaussian process functions.
To get an idea of the rate of convergence of the KGCP policy, we plot the performance
on the Gaussian processes in Figure 6.4. These promising simulations demonstrate that
the KGCP algorithm is a very competitive policy.

TABLE 6.1
Performance on standard test functions. Each row summarizes 500 runs of each policy on the specified

test function with the specified observation noise variance. We define σðOCÞ as StdðEðOCÞÞ and Med as the
median OC.

KGCP SKO

Test function
ffiffiffi
λ

p
EðOCÞ σðOCÞ Med EðOCÞ σðOCÞ Med

Ackley 5 (X ¼ ½−15; 30�5) ffiffiffiffi
:1

p
5.7304 .1874 4.0964 7.8130 .1802 6.4978ffiffiffiffiffiffiffi

1.0
p

10.8315 .2413 10.5855 12.6346 .2088 13.3955
p ¼ 5, σ ¼ 1.126

ffiffiffiffiffiffiffiffiffi
10:0

p
17 .3670 .1477 18.3281 18.1126 .1156 18.6481

Branin
ffiffiffiffi
:1

p
.0141 .0044 .0046 .0460 .0023 .0302ffiffiffiffiffiffiffi

1.0
p

.0462 .0039 .0234 .1284 .0218 .0737
p ¼ 2, σ ¼ 51:885

ffiffiffiffiffiffiffiffiffi
10:0

p
.2827 .0186 .1386 .4396 .0248 .2685

Hartman 3
ffiffiffiffi
:1

p
.0690 .0063 .0249 .1079 .0075 .0650ffiffiffiffiffiffiffi

1.0
p

.5336 .0296 .2658 .5012 .0216 .3737
p ¼ 3σ ¼ :938

ffiffiffiffiffiffiffiffiffi
10:0

p
1.8200 .0541 1.6182 1.8370 .0510 1.6552

Six hump camelback
ffiffiffiffi
:1

p
.0714 .0087 .0698 .1112 .0059 .0797ffiffiffiffiffiffiffi

1.0
p

.3208 .0192 .1315 .3597 .0156 .2035
p ¼ 2, σ ¼ 3.181

ffiffiffiffiffiffiffiffiffi
10:0

p
1.0264 .0391 .8641 .8488 .0370 .6585

GP (α ¼ :1, β ¼ 100)
ffiffiffiffi
:1

p
.0076 .0057 .0000 .0195 .0041 .0043ffiffiffiffiffiffiffi

1.0
p

.0454 .0243 .0018 .0888 .0226 .0182
p ¼ 1, σ ¼ 8.417

ffiffiffiffiffiffiffiffiffi
10:0

p
.3518 .0587 .0337 .2426 .0216 .0535

GP (α ¼ 1, β ¼ 100)
ffiffiffiffi
:1

p
.0077 .0022 .0000 .0765 .0311 .0000ffiffiffiffiffiffiffi

1.0
p

.0270 .0045 .0000 .1993 .0486 .0255
p ¼ 1, σ ¼ 9.909

ffiffiffiffiffiffiffiffiffi
10:0

p
.4605 .1028 .0489 .6225 .0669 .1558

GP α ¼ 10, β ¼ 100
ffiffiffiffi
:1

p
.1074 .0259 .0000 .5302 .0799 .0000ffiffiffiffiffiffiffi

1.0
p

.1846 .0286 .0000 .6638 .0839 .0839
p ¼ 1, σ ¼ 10:269

ffiffiffiffiffiffiffiffiffi
10:0

p
1.0239 .1021 .1415 1.8273 .1450 .6290
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7. Conclusion and future work. The KGCP is applicable to problems with con-
tinuous decision variables and observation noise and is similar to the expected improve-
ment used in EGO when there is no observation noise. We presented a gradient ascent
algorithm to approximately maximize the KGCP. The KGCP policy is very competitive
with SKO and has nice convergence theory, giving conditions under which our uncer-
tainty about the maximum of the expensive function with observation noise disappears.
Extensions could include additional research with a priori distributions as well as addi-
tional approximations to speed up computations as the number of observations get
large. Additional issues for further investigation are evaluating the algorithm on pro-
blems with larger dimensions p and applying the algorithm on problems with unequal
variances in the observation noise.

Appendix A.
A.1. Computing ∇xnμ

n�xi�. If i < n, then μn
xi

does not depend on xn so
∇xnμ

nðxiÞ ¼ 0. Now, consider when i ¼ n. We start with (3.9) for μnðxnÞ where xn

has not been sampled and then simplify:

μnðxnÞ ¼ μ0ðxnÞ þ eTnþ1Σ̄
0

2
64
I n

−

0
→T

3
75½Sn�−1 ~yn

¼ μ0ðxnÞ þ Σ0ðx0; xnÞ; : : : ;Σ0ðxn−1; xnÞ½Sn�−1 ~yn.

Now, because ½Sn�−1 ~yn does not depend on the decision xn, we can easily take the
gradient:

∇xnμ
nðxnÞ ¼ ∇xnμ

0ðxnÞ þ ½∇xnΣ0ðx0; xnÞ; : : : ;∇xnΣ0ðxn−1; xnÞ�½Sn�−1 ~yn

¼ ∇xnμ
0ðxnÞ þ Jn½Sn�−1 ~yn;ðA:1Þ
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FIG. 6.4. (a)–(c) show examples of Gaussian processes with the given covariance parameters. (d)–(f) show
the mean opportunity cost of the KGCP policy on the various Gaussian processes.
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where Jn is defined as in (4.15). When going from (4.15) to (4.16) we used the fact that
the covariance function was of the form specified in (3.2).

A.2. Computing ∇xn ~σi�Σn;xn�. First, recall that

~σiðΣ̄n; xnÞ ¼ eT
xi
Σ̄nexnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λðxnÞ þ eTxn Σ̄
nexn

q ; i ¼ 0; : : : ; n:ðA:2Þ

After we derive the gradient of the numerator and denominator of this equation, we can
find the gradient of (A.2) by using the quotient rule for differentiation:

∇xn ~σiðΣ̄n; xnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðxnÞ þ eTxn Σ̄

nexn
q

∇xne
T
xi
Σ̄nexn − eT

xi
Σ̄nexn∇xn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðxnÞ þ eTxn Σ̄

nexn
q

jλðxnÞ þ eTxn Σ̄
nexn j

.

A.2.1. The numerator. First, we consider the numerator of (A.2):

eT
xi
Σ̄nexn ¼ eT

xi
ðI − K̄n½I nj0

→�ÞΣ̄0exnðA:3Þ

¼ eT
xi
Σ̄0exn − eT

xi
K̄n½I nj0

→�Σ̄0exnðA:4Þ

¼ Σ0ðxi; xnÞ− eT
xi
Σ̄0

2
4 I n

−
0
→T

3
5½Sn�−1½I nj0

→�Σ̄0exnðA:5Þ

¼ Σ0ðxi; xnÞ− ½Σ0ðx0; xiÞ; : : : ;Σ0ðxn−1; xiÞ�½Sn�−1

2
64 Σ0ðx0; xnÞ

..

.

Σ0ðxn−1; xnÞ

3
75ðA:6Þ

¼ Σ0ðxi; xnÞ− ½Σ0ðx0; xnÞ; : : : ;Σ0ðxn−1; xnÞ�½Sn�−1

2
64 Σ0ðx0; xiÞ

..

.

Σ0ðxn−1; xiÞ

3
75.ðA:7Þ

In (A.3) we used the definition of Σ̄n in (3.10). From (A.4) to (A.6) we just inserted the
definition of K̄n given in (3.8). Going from (A.6) to (A.7) we took the transpose of the
last term which is a scalar and used the fact that ½Sn�−1 is symmetric. We first consider
the case where i < n. In this case

½Sn�−1

2
64 Σ0ðx0; xiÞ

..

.

Σ0ðxn−1; xiÞ

3
75 ¼ ½Sn�−1Σ0exi

and does not depend on xn so we can easily compute the gradient

∇xne
T
xi
Σ̄nexn ¼ ∇xnΣ0ðxi; xnÞ−∇xnΣ0ðx0; xnÞ; : : : ;∇xnΣ0ðxn−1; xnÞ½Sn�−1Σ0exi

¼ 2DIAGðαÞ � ðxi − xnÞΣ0ðxi; xnÞ− Jn½Sn�−1Σ0exi :ðA:8Þ
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Now, we consider the case where i ¼ n. Using standard matrix differentiation, we can
compute the gradient:

∇xne
T
xn Σ̄

nexn ¼

2
66666666666666664

0− 2 ∂
∂xn1

Σ0ðx0; xnÞ; : : : ; ∂
∂xn1

Σ0ðxn−1; xnÞ½Sn�−1

2
6664

Σ0ðx0; xnÞ
..
.

Σ0ðxn−1; xnÞ

3
7775

..

.

0− 2 ∂
∂xn1

Σ0ðx0; xnÞ; : : : ; ∂
∂xn1

Σ0ðxn−1; xnÞ½Sn�−1

2
6664

Σ0ðx0; xnÞ
..
.

Σ0ðxn−1; xnÞ

3
7775

3
77777777777777775

¼ −2∇xnΣ0ðx0; xnÞ; : : : ;∇xnΣ0ðxn−1; xnÞ½Sn�−1

2
6664

Σ0ðx0; xnÞ
..
.

Σ0ðxn−1; xnÞ

3
7775

¼ −2Jn½Sn�−1

2
6664

Σ0ðx0; xnÞ
..
.

Σ0ðxn−1; xnÞ

3
7775:

A.2.2. The denominator. Now, we consider the denominator of (A.2):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðxnÞ þ eTxn Σ̄

nexn
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðxnÞ þ eTxnðI − K̄n½I nj0

→�ÞΣ̄0exn

q
ðA:9Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðxnÞ þ Σ0ðxn; xnÞ− eTxnK̄

n½I nj0
→�Σ̄0exn

q
ðA:10Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðxnÞ þ Σ0ðxn; xnÞ− eTxn Σ̄

0

2
64 I n

−
0
→T

3
75½Sn�−1½I nj0

→�Σ̄0exn

vuuuutðA:11Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðxnÞ þ Σ0ðxn; xnÞ− ½Σ0ðx0; xnÞ; : : : ;Σ0ðxn−1; xnÞ�½Sn�−1

2
64 Σ0ðx0; xnÞ

..

.

Σ0ðxn−1; xnÞ

3
75

vuuuut .

In (A.9) we inserted the definition of Σ̄n given in (3.10). Going from (A.10) to (A.11) we
inserted the definition of K̄n given in (3.8). Now, we take the gradient:
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∇xn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðxnÞ þ eTxnΣnexn

q
¼

2
6666666666666666666666664

1
2 ðλðxnÞ þ Σnðxn; xnÞÞ−1

2

0
BBB@ ∂

∂xn1
λðxnÞ− 2 ∂

∂xn1
Σ0ðx0; xnÞ ; : : : ; ∂

∂xn1
Σ0ðxn−1; xnÞ½Sn�−1

2
6664

Σ0ðx0; xnÞ
..
.

Σ0ðxn−1; xnÞ

3
7775
1
CCCA

..

.

1
2 ðλðxnÞ þ Σnðxn; xnÞÞ−1

2

0
BBBBB@ ∂

∂xnp
λðxnÞ− 2 ∂

∂xnp
Σ0ðx0; xnÞ ; : : : ; ∂

∂xnp
Σ0ðxn−1; xnÞ½Sn�−1

2
666664

Σ0ðx0; xnÞ

..

.

Σ0ðxn−1; xnÞ

3
777775

1
CCCCCA

3
7777777777777777777777775

¼ 1

2
ðλðxnÞ þ Σnðxn; xnÞÞ−1

2

0
B@∇xn λðxnÞ

− 2½∇xnΣ0ðx0; xnÞ ; : : : ; ∇xnΣ0ðxn−1; xnÞ�½Sn�−1

2
64 Σ0ðx0; xnÞ

..

.

Σ0ðxn−1; xnÞ

3
75
1
CA

¼ 1

2
ðλðxnÞ þ Σnðxn; xnÞÞ−1

2

0
B@∇xn λðxnÞ− 2Jn½Sn�−1

2
64 Σ0ðx0; xnÞ

..

.

Σ0ðxn−1; xnÞ

3
75
1
CA.

A.3. Proof of Proposition 5.1. We derive the upper bound of the KGCP given in
(5.1), starting with

E

�
max

i¼0; : : : ;n
μnþ1ðxiÞjFn; xn ¼ x

�
ðA:12Þ

¼ E

�
max

i¼0; : : : ;n
μnðxiÞ þ ~σiðΣ̄n; xnÞZnþ1jFn; xn ¼ x

�
ðA:13Þ

≤ max
i¼0; : : : ;n

μnðxiÞ þ E

�
max

j¼0; : : : ;n
~σjðΣ̄n; xnÞZnþ1jFn; xn ¼ x

�

¼ max
i¼0; : : : ;n

μnðxiÞ þ E

�
max

j¼0; : : : ;n
~σjðΣ̄n; xnÞZnþ11ðZnþ1 > 0Þ

þ max
k¼0; : : : ;n

~σkðΣ̄n; xnÞZnþ11ðZnþ1 ≤ 0ÞjFn; xn ¼ x

�
¼ max

i¼0; : : : ;n
μnðxiÞ þ E½Znþ11ðZnþ1 > 0Þ� max

j¼0; : : : ;n
~σjðΣ̄n; xnÞ

þ E½Znþ11ðZnþ1 ≤ 0Þ� min
k¼0; : : : ;n

~σkðΣ̄n; xnÞ

¼ max
i¼0; : : : ;n

μnðxiÞ þ 1ffiffiffiffiffiffi
2π

p max
j¼0; : : : ;n

~σjðΣ̄n; xnÞ− 1ffiffiffiffiffiffi
2π

p min
k¼0; : : : ;n

~σkðΣ̄n; xnÞ

≤ max
i¼0; : : : ;n

μnðxiÞ þ 2ffiffiffiffiffiffi
2π

p max
j¼0; : : : ;n

j ~σjðΣ̄n; xnÞj:ðA:14Þ

We now need an upper bound on j ~σjðΣ̄n; xnÞj in (A.14). We just note that
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j ~σjðΣ̄n; xnÞj ¼
������ exj Σ̄nexnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λþ eTxn Σ̄
nexn

q
������

¼
����Covn½μðxjÞ;μðxnÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λþ Varn½μðxnÞ�p ����
¼
����Corrn½μðjÞ;μðxnÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varn½μðxjÞ�Varn½μðxnÞ�

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ Varn½μðxnÞ�p ����

≤
����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varn½μðxjÞ�Varn½μðxnÞ�

p ffiffiffi
λ

p
����

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varn½μðxjÞ�Varn½μðxnÞ�

λ

r
:ðA:15Þ

Combining (A.14) and (A.15) we have an upper bound on the KGCP:

ν̄KG;nðxÞ ≤ 2ffiffiffiffiffiffi
2π

p max
j¼0; : : : ;n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varn½μðxjÞ�Varn½μðxnÞ�

λ

r
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βVarn½μðxnÞ�

πλ

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βVarn½μðxÞ�

πλ

r
.ðA:16Þ

The KGCP is nonnegative, and the above upper bound on the KGCP of a decision x
converges to zero as the conditional variance of μðxÞ converges to zero.

A.4. Proof of Proposition 5.2. We derive how the conditional variance of μðxdÞ
decreases if we repeatedly measure a particular point xmult n times with noise variance λ
for each observation. We define the policy πmult which sets x0 ¼ · · ·¼ xn−1 ¼ xmult.
Under this policy we see

Σnðx; xÞ
¼ eTx Σ̄nex

¼ eTxnðI − K̄n½I nj0
→�ÞΣ̄0exnðA:17Þ

¼ Σ0ðx; xÞ− eTx K̄
n½I nj0

→�Σ̄0exðA:18Þ

¼ Σ0ðx; xÞ− eTx Σ̄0

" I n
−
0
→T

#
½Sn�−1½I nj0

→�Σ̄0ex

¼ Σ0ðx; xÞ− ½Σ0ðx0; xÞ; : : : ;Σ0ðxn−1; xÞ�½Sn�−1

2
64 Σ0ðx0; xÞ

..

.

Σ0ðxn−1; xÞ

3
75

ðA:19Þ
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¼ Σ0ðx; xÞ− ½Σ0ðx0; xÞ; : : : ;Σ0ðxn−1; xÞ�½Σ0 þ λI n�−1

2
64 Σ0ðx0; xÞ

..

.

Σ0ðxn−1; xÞ

3
75

¼ β− ½Σ0ðxmult; xÞ; : : : ;Σ0ðxmult; xÞ�

2
64
2
64β · · · β

..

. . .
. ..

.

β · · · β

3
75þ λI n

3
75
−1

2
666664
Σ0ðxmult; xÞ

..

.

Σ0ðxmult; xÞ

3
777775

¼ β− ðΣ0ðxmult; xÞÞ2eT
2
64β

2
64 1 · · · 1
..
. . .

. ..
.

1 · · · 1

3
75þ λI n

3
75
−1

e

ðA:20Þ

¼ β− ðΣ0ðxmult; xÞÞ2 n

βnþ λ
:ðA:21Þ

In (A.17) we insert the definition of Σ̄n given in (3.10). In (A.18) we insert the definition
of K̄n given in (3.8). ½Sn�−1 is positive semidefinite, so the second term in (A.19) is non-
negative. In (A.20) e is a column vector of ones, and we simplify the expression using the
definition of the inverse of Sn:

½Sn�−1

2
664β

2
664
1 · · · 1

..

. . .
. ..

.

1 · · · 1

3
775þ λI n

3
775 ¼ I n;

eT ½Sn�−1

2
664β

2
664
1 · · · 1

..

. . .
. ..

.

1 · · · 1

3
775þ λI n

3
775e ¼ eTI ne;

eT ½Sn�−1½βneþ λe� ¼ n;

eT ½Sn�−1e ¼ n

βnþ λ
:ðA:22Þ

First, consider the change Varn½μðxdÞ�− Varnþ1½μðxdÞ� if we have measured xmult n
times, and then measure xmult one more time. We use (A.21) and assume
Σ0ðx; xÞ ¼ β ∀x. Also, define β0 ¼ Σ0ðxmult; xdÞ. The decrease in the conditional var-
iance of μðxdÞ from measuring xmult once more is

Varn½μðxdÞ�−Varnþ1½μðxdÞ�
¼ ðβ− B2

0nðnβþ λÞ−1Þ− ðβ− B2
0ðnþ 1Þððnþ 1Þβþ λÞ−1Þ

ðA:23Þ

¼ B2
0ðnþ 1Þððnþ 1Þβþ λÞ−1 − B2

0nðnβþ λÞ−1

¼ B2
0ðnþ 1Þðnβþ λÞ− B2

0nððnþ 1Þβþ λÞ
ððnþ 1Þβþ λÞðnβþ λÞ

¼ β2
0λ

ððnþ 1Þβþ λÞðnβþ λÞ :ðA:24Þ

In (A.23) we just used (A.21) which gives an expression for Varn½μðxÞ� if we measure
xmult n times and nothing else. Second, we consider measuring the change in
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Varn½μ̂ðxdÞ�− Varnþ1½μ̂ðxdÞ� if we have measured xmult n times and then measure xnear

one time, where xnear ∈ Bðxacc; ϵÞ and satisfies Σ0ðxmult; xdÞ ≤ Σ0ðxnear; xdÞ. We define
β1 ¼ Σ0ðxmult; xnearÞ and β2 ¼ Σ0ðxnear; xdÞ. Note that β0 ≤ β2 and 0 < β0;β1;β2 ≤ β.

Σnþ1ðxd; xdÞ
¼ Σnðxd; xdÞ− Σnðxnear; xdÞðΣnðxnear; xnearÞ þ λÞ−1Σnðxnear; xdÞðA:25Þ

¼ Σnðxd; xdÞ− ðΣnðxnear; xdÞÞ2ðΣnðxnear; xnearÞ þ λÞ−1

¼ Σnðxd; xdÞ

−
�
Σ0ðxnear; xdÞ− nΣ0ðxmult; xdÞΣ0ðxmult; xnearÞ

nβþ λ

�
2

ðΣnðxnear; xnearÞ þ λÞ−1

¼ Σnðxd; xdÞ−
�
β2 −

nβ0β1

nβþ λ

�
2
�
β− ðΣ0ðxmult; xnearÞÞ2 n

nβþ λ
þ λ

�
−1

¼ Σnðxd; xdÞ−
�
β2 −

nβ0β1

nβþ λ

�
2
�
β−

nβ2
1

nβþ λ
þ λ

�−1

.

ðA:26Þ

In (A.25) we use the recursive equation for updating the conditional variance. In (A.26)
we plugged in the equation for Σnðxnear; xdÞ which is derived in the same way as (A.21).
Equivalently we can write

Varn½μðxdÞ�−Varnþ1½μðxdÞ� ¼
�
β2 −

nβ0β1

nβþ λ

�
2
�
β−

nβ2
1

nβþ λ
þ λ

�−1

:ðA:27Þ

We now want to show that if we have measured xmult n times, the amount we can lower
the conditional variance ofμðxdÞ by observing xmult again given in (A.24) is smaller than
the amount given in (A.27) if we observe a new point xnear:�

β2 −
nβ0β1

nβþ λ

�
2
�
β−

nβ2
1

nβþ λ
þ λ

�−1

¼
�
β2ðnβþ λÞ− nβ0β1

nβþ λ

�
2
�ðβþ λÞðnβþ λÞ− nβ2

1

nβþ λ

�−1

¼ ðβ2ðnβþ λÞ− nβ0β1Þ2
ðnβþ λÞððβþ λÞðnβþ λÞ− nβ2

1Þ

≥
ðβ0ðnβþ λÞ− nβ0β1Þ2

ðnβþ λÞððβþ λÞðnβþ λÞ− nβ2
1Þ

ðA:28Þ

≥
ðβ0ðnβþ λÞ− nβ0βÞ2

ðnβþ λÞððβþ λÞðnβþ λÞ− nβ2ÞðA:29Þ

¼ β2
0λ

2

ðnβþ λÞðnβλþ βλþ λ2Þ

¼ β2
0λ

ðnβþ λÞððnþ 1Þβþ λÞ .ðA:30Þ

In (A.28) we replaced β2 with the smaller β0. This is valid because the overall term is
positive and the numerator is nonnegative because β0 ≤ β2 and β1 ≤ β. In (A.29) we
replaced β1 with the larger β. This is valid because the derivative of (A.28) with respect
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to β1 is negative. Using the quotient rule the derivative of (A.28) with respect to β1

becomes

ðnβþ λÞððβþ λÞðnβþ λÞ− nβ2
1Þ2ðβ0ðnβþ λÞ− nβ0β1Þð−nβ0Þ− ðβ0ðnβþ λÞ− nβ0β1Þ2ðnβþ λÞð−2nβ1Þ

c2

¼ 2nðnβþ λÞc−2ðððβþ λÞðnβþ λÞ− nβ2
1Þðβ0ðnβþ λÞ− nβ0β1Þð−β0Þ− ðβ0ðnβþ λÞ− nβ0β1Þ2ð−β1ÞÞ

¼ 2nðnβþ λÞc−2ððβ0ðnβþ λÞ− nβ0β1Þ2β1 − ððβþ λÞðnβþ λÞ− nβ2
1Þðβ0ðnβþ λÞ− nβ0β1Þβ0Þ

¼ 2nðnβþ λÞc−2ððnβþ λ− nβ1Þ2β2
0β1 − ððβþ λÞðnβþ λÞ− nβ2

1Þðnβþ λ− nβ1Þβ2
0Þ

¼ 2nðnβþ λÞc−2β2
0ðnβþ λ− nβ1Þððnβþ λ− nβ1Þβ1 − ððβþ λÞðnβþ λÞ− nβ2

1ÞÞ
¼ 2nðnβþ λÞc−2β2

0ðnβþ λ− nβ1Þððnβþ λÞβ1 − ðβþ λÞðnβþ λÞÞ
¼ 2nðnβþ λÞ2c−2β2

0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≥0

ðnβþ λ− nβ1Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
≥0

ðβ1 − β− λÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
≥0

≤ 0:

We have now shown that if we have measured xmult n times, the amount we can
lower the conditional variance of μðxdÞ by observing xmult again given in (A.24) is smal-
ler than the amount given in (A.27) if we observe a new point xnear. This is true
for n ¼ 0; 1; 2; : : : , so using an induction argument we see that maxx0; : : : ;
xn−1 ∈ Bðxacc; ϵÞVarn½μðxdÞ� equals Varn½μðxdÞ� under πmult. ▯
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